分析 (1)根據折疊的性質得到∠BFE=∠DFE,又AD∥BC,得到∠BFE=∠FED,則∠DFE=∠FED,于是DE=DF,所以△DEF是等腰三角形;
(2)根據折疊的性質得到FB=FD,EB=ED,由(2)得DE=DF,得到DE=EB=BF=FD,根據菱形的判定方法得到四邊形BEDF是菱形即可.
解答 解:(1)△DEF是等腰三角形.理由如下:
∵矩形沿EF折疊,使頂點B和D重合,
∴∠BFE=∠DFE,
∵AD∥BC,
∴∠BFE=∠FED,
∴∠DFE=∠FED,
∴DE=DF,
∴△DEF是等腰三角形;
(2)連BE、BD,如圖,四邊形BEDF是菱形.理由如下:
∵矩形沿EF折疊,使頂點B和D重合,
∴FB=FD,EB=ED,
由(2)得DE=DF,
∴DE=EB=BF=FD,
∴四邊形BEDF是菱形.
點評 本題考查了折疊的性質、矩形的性質、等腰三角形的判定、菱形的判定等知識;熟練掌握矩形的性質和折疊的性質是解決問題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com