【題目】有這樣一個題目:
按照給定的計算程序,確定使代數式n(n+2)大于2000的n的最小正整數值.想一想,怎樣迅速找到這個n值,請與同學們交流你的體會.
小亮嘗試計算了幾組n和n(n+2)的對應值如下表:
n | 50 | 40 | |
n(n+2) | 2600 | 1680 |
(1)請你繼續小亮的嘗試,再算幾組填在上表中(幾組隨意,自己畫格),并寫出滿足題目要求的n的值;
(2)結合上述過程,對于“怎樣迅速找到n值”這個問題,說說你的想法.
科目:初中數學 來源: 題型:
【題目】電視節目“奔跑吧兄弟”播出后深受中小學生的喜愛,小剛想知道大家最喜歡哪位“兄弟”,于是在本校隨機抽取了一部分學生進行抽查(每人只能選一個自己最喜歡的“兄弟”),將調查結果進行了整理后繪制成如圖兩幅不完整的統計圖,請結合圖中提供的信息解答下列問題:
(1)本次被調查的學生有_______人.
(2)將兩幅統計圖補充完整.
(3)若從3名喜歡“李晨”的學生和2名喜歡“”的學生中隨機抽取兩人參加文體活動,用樹狀圖或列表法求出兩人都是喜歡“李晨”的學生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結果保留
和根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)在(1)中拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.
(4)如圖2,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校初三(1)班部分同學接受一次內容為“最適合自己的考前減壓方式”的調查活動,收集整理數據后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統計圖,請根據圖中的信息解答下列問題.
(1)初三(1)班接受調查的同學共有多少名;
(2)補全條形統計圖,并計算扇形統計圖中的“體育活動C”所對應的圓心角度數;
(3)若喜歡“交流談心”的5名同學中有三名男生和兩名女生;老師想從5名同學中任選兩名同學進行交流,直接寫出選取的兩名同學都是女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=2BC,點D在邊AC上,連接BD,過A作BD的垂線交BD的延長線于點E.
(1)若M,N分別為線段AB,EC的中點,如圖1,求證:MN⊥EC;
(2)如圖2,過點C作CF⊥EC交BD于點F,求證:AE=2BF;
(3)如圖3,以AE為一邊作一個角等于∠BAC,這個角的另一邊與BE的延長線交于P點,O為BP的中點,連接OC,求證:OC=(BE﹣PE).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學開展“綠化家鄉、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹的棵樹和所占百分比情況進行了調查,將收集的數據整理并繪制成圖1和圖2兩幅不完整的統計圖,請根據圖中的信息,完成下列問題:
(1)這四個班共植樹 棵;
(2)請補全兩幅統計圖;
(3)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹大約有多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC關于原點對稱的△A1B1C1,并寫出點B1,C1的坐標;
(2)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,兩個全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點B和點D重合,點F在BC上,將△DEF沿射線BC平移,設平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關于x的函數圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時,函數的解析式不同)
(1)填空:BC的長為_____;
(2)求y關于x的函數關系式,并寫出x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com