【題目】在△ABC中,P為邊AB上一點.
(1)如圖1,若∠ACP=∠B,求證:AC2=APAB;
(2)若M為CP的中點,AC=2.
①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;
②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.
【答案】
(1)
解:∵∠ACP=∠B,∠A=∠A,
∴△ACP∽△ABC,
∴ ,
∴AC2=APAB
(2)
解:①取AP在中點G,連接MG,
設AG=x,則PG=x,BG=3﹣x,
∵M是PC的中點,
∴MG∥AC,
∴∠BGM=∠A,
∵∠ACP=∠PBM,
∴△APC∽△GMB,
∴ ,
即 ,
∴x= ,
∵AB=3,
∴AP=3﹣ ,
∴PB= ;
②過C作CH⊥AB于H,延長AB到E,使BE=BP,
設BP=x.
∵∠ABC=45°,∠A=60°,
∴CH= ,HE=
+x,
∵CE2= +(
+x)2,
∵PB=BE,PM=CM,
∴BM∥CE,
∴∠PMB=∠PCE=60°=∠A,
∵∠E=∠E,
∴△ECP∽△EAC,
∴ ,
∴CE2=EPEA,
∴3+3+x2+2 x=2x(x+
+1),
∴x= ﹣1,
∴PB= ﹣1.
【解析】(1)根據相似三角形的判定定理即可得到結論;(2)①取AP在中點G,連接MG,設AG=x,則PG=x,BG=3﹣x,根據三角形的中位線的性質得到MG∥AC,由平行線的性質得到∠BGM=∠A,∵∠根據相似三角形的性質得到 ,求得x=
,即可得到結論;②過C作CH⊥AB于H,延長AB到E,使BE=BP解直角三角形得到CH=
,HE=
+x,根據勾股定理得到CE2=
+9
+x)2根據相似三角形的性質得到CE2=EPEA列方程即可得到結論.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經過點E的反比例函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C表示某旅游景區三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點在同一鉛直平面內,它們的海拔高度AA′,BB′,CC′分別為110米、310米、710米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區因改造纜車線路,需要從A到C直線架設一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員選拔一人參加運動會,對他們進行了六次測試,測試成績如下表(單位:環)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)由表格中的數據,計算出甲的平均成績是 環,乙的成績是 環.
(2)結合平均水平與發揮穩定性你認為推薦誰參加比賽更適合,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)比較大;
①|﹣2|+|3| |﹣2+3|;
②|4|+|3| |4+3|;
③|﹣|+|﹣
| |﹣
+(﹣
)|;
④|﹣5|+|0| |﹣5+0|.
(2)通過(1)中的大小比較,猜想并歸納出|a|+|b|與|a+b|的大小關系,并說明a,b滿足什么關系時,|a|+|b|=|a+b|成立?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=x+4分別與x軸、y軸相交于點M,N,邊長為2的正方形OABC一個頂點O在坐標系的原點,直線AN與MC相交于點P,若正方形繞著點O旋轉一周,則點P到點(0,2)長度的最小值是( )
A.2 ﹣2
B.3﹣2
C.
D.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com