分析 (1)利用已知條件證明△DAB≌△EBC(ASA),根據全等三角形的對應邊相等即可得到AD=BE;
(2)分別證明AD=AE,CE=CE,根據線段垂直平分線的逆定理即可解答;
(3)△DBC是等腰三角形,由△DAB≌△EBC,得到DB=EC,又有△AEC≌△ADC,得到EC=DC,所以DB=DC,即可解答.
解答 解:(1)∵∠ABC=90°,
∴∠ABD+∠DBC=90°,
∵CE⊥BD,
∴∠BCE+∠DBC=90°,
∴∠ABD=∠BCE,
∵AD∥BC,
∴∠DAB=∠EBC,
在△DAB和△EBC中,
$\left\{\begin{array}{l}{∠ABD=∠BCE}\\{AB=BC}\\{∠DAB=∠EBC}\end{array}\right.$
∴△DAB≌△EBC(ASA)
∴AD=BE
(2)∵E是AB的中點,即AE=BE,
∵BE=AD,
∴AE=AD,
∴點A在ED的垂直平分線上(到角兩邊相等的點在角的平分線上),
∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠BAD=90°,
∴∠BAC=∠DAC=45°,
在△EAC和△DAC中,
$\left\{\begin{array}{l}{AE=AD}\\{∠EAC=∠DAC}\\{AC=AC}\end{array}\right.$,
∴△EAC≌△DAC(SAS)
∴CE=CD,
∴點C在ED的垂直平分線上
∴AC是線段ED的垂直平分線.
(3)△DBC是等腰三角形
∵△DAB≌△EBC,
∴DB=EC
∵△AEC≌△ADC,
∴EC=DC,
∴DB=DC,
∴△DBC是等腰三角形.
點評 本題考查了全等三角形的性質定理與判定定理,解決本題的關鍵是證明三角形全等.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
特殊網圖 | ![]() | ![]() | ![]() | ![]() |
結點數(V) | 4 | 6 | 9 | 12 |
網眼數(F) | 1 | 2 | 4 | 6 |
邊數(E) | 4 | 7 | 12 | ☆ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2 | B. | 2.5 | C. | 3 | D. | 3.5 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com