【題目】如圖,為測量小島A到公路BD的距離,先在點B處測得∠ABD=37°,再沿BD方向前進150m到達點C,測得∠ACD=45°,求小島A到公路BD的距離.(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
科目:初中數學 來源: 題型:
【題目】如圖,已知點A1,A2,…,An均在直線上,點B1,B2,…,Bn均在雙曲線
上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為
(n為正整數).若
,則
__,
__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
觀察猜想
如圖1,有公共直角頂點的兩個不全等的等腰直角三角尺疊放在一起,點
在
上,點
在
上.
(1)在圖1中,你發現線段,
的數量關系是___________,直線
,
的位置關系是________.
操作發現
(2)將圖1中的繞點
逆時針旋轉一個銳角得到圖2,這時(1)中的兩個結論是否成立?作出判斷并說明理由;
拓廣探索
(3)如圖3,若只把“有公共直角頂點的兩個不全等的等腰直角三角尺”改為“有公共頂角為
(銳角)的兩個不全等等腰三角形”,
繞點
逆時針旋轉任意一個銳角,這時(1)中的兩個結論仍然成立嗎?作出判斷,不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面內容,并按要求解決問題:
問題:“在平面內,已知分別有2個點,3個點,4個點,5個點,…,個點,其中任意三個點都不在同一條直線上經過每兩點畫一條直線,它們可以分別畫多少條直線?”
探究:為了解決這個問題,希望小組的同學們,設計了如下表格進行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點的一條直線)
點數 | 2 | 3 | 4 | 5 | … | |
示意圖 | … | |||||
直線條數 | 1 | … |
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結論:當平面內有個點時,直線條數為______;
(2)若某同學按照本題中的方法,共畫了28條直線,求該平面內有多少個已知點?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐:問題情境:在一次綜合實踐活動課上,同學們以菱形為對象,研究菱形旋轉中的問題:已知,在菱形中,
為對角線,
,
,將菱形
繞頂點
順時針旋轉,旋轉角為
(單位
).旋轉后的菱形為
.在旋轉探究活動中提出下列問題,請你幫他們解決.
(1)如圖1,若旋轉角,
與
相交于點
,
與
相交于點
.請說明線段
與
的數量關系;
(2)如圖2,連接,菱形
旋轉的過程中,當
與
互相垂直時,
的長為______;
(3)如圖3,若旋轉角為時,分別連接
,
,過點
分別作
,
,連接
,菱形
旋轉的過程中,發現在
中存在長度不變的線段
,請求出
長度;
操作探究:(4)如圖4,在(3)的條件下,請判斷以,
,
三條線段長度為邊的三角形是什么特殊三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與y=x+1交于點A(1,m),直線y=kx+b交y軸于點B(0,4).
(1)試確定m,k,b的值;
(2)當0≤x≤2時,寫出二元一次方程kx﹣y=﹣b的所有整數解;
(3)寫出方程組的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(3,0),點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一塊長方形的土地,寬為120m,建筑商把它分成甲、乙、丙三部分,甲和乙均為正方形,現計劃甲建住宅區,乙建商場,丙地開辟成面積為3200m2的公園.若設這塊長方形的土地長為xm.那么根據題意列出的方程是_____.(將答案寫成ax2+bx+c=0(a≠0)的形式)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com