分析 根據等邊三角形的性質可以得出AB=AE,AP=AQ,由等式的性質就可以得出∠BAP=∠EAQ,就可以得出△ABP≌△AEQ,根據全等得出∠ABP=∠AEQ=90°,進而可以得出∠FBE=FEB=30°,就可以得出EF=BF.
解答 證明:如圖所示:
∵△ABE和△APQ是等邊三角形,
∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,
∴∠BAE-∠PAE=∠PAQ-∠PAE,
∴∠BAP=∠EAQ.
在△QAE和△PAB中,
$\left\{\begin{array}{l}{AB=AE}\\{∠BAP=∠EAQ}\\{AP=AQ}\end{array}\right.$,
∴△QAE≌△PAB(SAS),
∴∠ABP=∠AEQ=90°.
∴∠AEF=90°,
∴∠ABP=∠AEF
∴∠ABP-∠AEB=∠AEF-∠ABE,
∴∠BEF=∠EBF,
∴BF=EF.
點評 本題考查了等邊三角形的性質的運用,等式的性質的運用,全等三角形的判定及性質的運用,解答時證明三角形全等是關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | BF=DF | B. | ∠1=∠EFD | C. | BF>EF | D. | FD∥BC |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 | 5臺 | -7臺 | -3臺 | 10臺 | -9臺 | -15臺 | 5臺 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com