132
分析:分析條件“兩堆煤,其中乙堆占

”,在這里把兩堆煤原來的重量看作單位“1”,則甲堆占(1-

),又知道原來的兩堆煤共重126噸,根據這些求出原來甲和乙各多少噸,再把后來運來的煤設為x,分析“后來又運來一部分煤放入乙堆,這時甲堆比乙堆多

”這兩個條件,得出“(甲堆煤-乙堆煤現在重量)÷乙堆煤現在的重量=

”這個關系式,列方程求出運來的部分,再加上原來兩堆煤的重量就是現在兩堆煤的重量.
解答:126×

=54(噸)
126×(1-

)
=126×

=72(噸)
解:設后來運來x噸煤,根據題意得
[72-(54+x)]÷(54+x)=

(72-54-x)÷(54+x)=

(18-x)÷(54+x)=

(18-x):(54+x)=1:5
90-5x=54+x
6x=36
x=6
126+6=132(噸)
故填132.
點評:求一個數(a)比另一個數(b)多幾分之幾,列式為:(a-b)÷b.