日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(10)若要確保從口袋中摸出的小球至少有10個是同色的呢? 查看更多

 

題目列表(包括答案和解析)

實際問題:某學校共有18個教學班,每班的學生數都是40人.為了解學生課余時間上網情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?

建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數學模型:

在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?

為了找到解決問題的辦法,我們可把上述問題簡單化:

(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?

假若從袋中隨機摸出3個小球,它們的顏色可能會出現多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數是:1+3=4(如圖①);

(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?

我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數是:1+3×2=7(如圖②)

(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?

我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數是:1+3×3=10(如圖③):

……

(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?

我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是________

(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數是________

(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是________

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是________

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是________

問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數學模型;

(2)根據(1)中建立的數學模型,求出全校最少需抽取多少名學生.

查看答案和解析>>

實際問題:某學校共有18個教學班,每班的學生數都是40人.為了解學生課余時間上網情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?

建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數學模型:

在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?

為了找到解決問題的辦法,我們可把上述問題簡單化:

(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?

假若從袋中隨機摸出3個小球,它們的顏色可能會出現多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數是:(如圖①);

(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?

我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數是:(如圖②)

(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?

我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數是:(如圖③):

(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?

我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數是:(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20分(除顏色外完全相同),現從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是         

(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數是        

(3)若要確保摸出的小球至少有個同色(),則最少需摸出小球的個數是        

模型拓展二:在不透明口袋中裝有種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是          

(2)若要確保摸出的小球至少有個同色(),則最少需摸出小球的個數是      

問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數學模型;

(2)根據(1)中建立的數學模型,求出全校最少需抽取多少名學生.

查看答案和解析>>

17、實際問題:某學校共有18個教學班,每班的學生數都是40人.為了解學生課余時間上網情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數學模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍,綠五種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是
6

(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數是
46

(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是
1+m(n-1)

問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數學模型;
(2)根據(1)中建立的數學模型,求出全校最少需抽取多少名學生?

查看答案和解析>>

實際問題:某學校共有18個教學班,每班的學生數都是40人.為了解學生課余時間上網情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數學模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍,綠五種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是______;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數是______;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是______.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是______.
(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是______.
問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數學模型;
(2)根據(1)中建立的數學模型,求出全校最少需抽取多少名學生?

查看答案和解析>>

實際問題:
某學校共有18個教學班,每班的學生數都是40人,為了解學生課余時間上網情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:
為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數學模型:在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?假若從袋中隨機摸出3個小球,它們的顏色可能會出現多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數是:1+3×3=10(如圖③)
...
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數是:1+3×(10-1)=28(如圖⑩)

模型拓展一:
在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20分(除顏色外完全相同),現從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是____;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數是____;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是____;
模型拓展二:
在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數是____;
(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數是____;
問題解決:
(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數學模型;
(2)根據(1)中建立的數學模型,求出全校最少需抽取多少名學生。

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久永久免费观看 | 国产精品久久久久久久久 | 国产视频中文字幕 | 日韩精品一区二区在线 | 精品久久一区二区三区 | 国产精品二区三区 | 国产成人精品在线 | 日产精品久久久一区二区 | 在线成人| 日韩欧美在线播放 | 中文字幕一区二区三区乱码在线 | 亚洲精品久久久久久下一站 | 久久亚| 亚洲精品一区久久久久久 | 黄色免费在线观看 | 欧美 日韩 国产 成人 在线 | 久久久久久美女 | 91在线观看视频 | 国产成人精品免高潮在线观看 | 午夜欧美一区二区三区在线播放 | 在线欧美色 | 天天色影视综合 | 国产精一区二区 | 日韩成人精品 | 国产一区二区黄 | 天天在线综合 | 观看av| 蜜桃精品视频在线 | 久久久精品亚洲 | 99精品国产高清一区二区麻豆 | 亚洲精品日韩综合观看成人91 | 亚洲精品一区久久久久久 | 蜜桃视频网站在线观看 | 欧美激情一区二区三级高清视频 | 久草免费福利 | 在线看片网站 | 老司机午夜免费精品视频 | 日韩免费视频 | 久久成人综合 | 日韩国产欧美一区二区 | 四虎国产精品成人免费4hu |