日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______.
(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
問題解決:(1)請把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

解:模型拓展一:(1)1+5=6;
藍(lán)
(紅,紅) (紅,白)(紅,藍(lán))
(黃,紅)(黃,白) (黃,藍(lán))
藍(lán) (藍(lán),紅)(藍(lán),白) (藍(lán),藍(lán))
(2)1+5×9=46;

(3)1+5(n-1);

模型拓展二:(1)1+m;

(2)1+m(n-1);

問題解決:(1)在不透明口袋中放入18種顏色的小球(小球除顏色外完全相同)各40個(gè),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
(2)1+18×(10-1)=163個(gè)
分析:首先要理解題意,此題需要兩步完成,借助于列表法求解較簡單;解題時(shí)要注意利用類比和轉(zhuǎn)化的思想結(jié)合活動(dòng)中獲得的數(shù)學(xué)經(jīng)驗(yàn)與知識(shí)解決實(shí)際問題.
點(diǎn)評(píng):本題以范例的形式給出,并在求解的過程中暗示解決問題的思路,要求學(xué)生在理解的基礎(chǔ)上進(jìn)行方法的遷移運(yùn)用.利用類比和轉(zhuǎn)化的思想結(jié)合活動(dòng)中獲得的數(shù)學(xué)經(jīng)驗(yàn)與知識(shí)解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

17、實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
6

(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
46

(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是
1+m

(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第28章《概率初步》中考題集(30):28.2 等可能情況下的概率計(jì)算(解析版) 題型:解答題

實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______.
(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
問題解決:(1)請把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《概率初步》中考題集(30):25.2 用列舉法求概率(解析版) 題型:解答題

實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______.
(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
問題解決:(1)請把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(07)(解析版) 題型:解答題

(2008•青島)實(shí)際問題:某學(xué)校共有18個(gè)教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時(shí)間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級(jí),那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個(gè)是同色的,則最少需摸出多少個(gè)小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個(gè)是同色的,則最少需摸出多少個(gè)小球?
假若從袋中隨機(jī)摸出3個(gè)小球,它們的顏色可能會(huì)出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個(gè)小球就可確保至少有2個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個(gè)是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有3個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個(gè)是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有4個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個(gè)是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個(gè)小球,就可確保至少有10個(gè)小球同色,即最少需摸出小球的個(gè)數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(2)若要確保摸出的小球至少有10個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______;
(3)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(gè)(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個(gè)同色,則最少需摸出小球的個(gè)數(shù)是______.
(2)若要確保摸出的小球至少有n個(gè)同色(n<20),則最少需摸出小球的個(gè)數(shù)是______.
問題解決:(1)請把本題中的“實(shí)際問題”轉(zhuǎn)化為一個(gè)從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 日本一区二区视频在线 | 久久久久国产一区二区三区小说 | 91久久 | 国产精品91视频 | jizz欧美大片| www.4虎| 精品亚洲一区二区三区 | 97国产精品 | 欧美成视频| 91精品中文字幕一区二区三区 | 日韩三级在线 | 欧美成人高清视频 | 操老逼| 国产精品免费视频观看 | 在线天堂中文在线资源网 | 国产乱码精品一区二区三区五月婷 | 久久久国产精品免费 | 九九综合九九 | 亚洲久草| 伊人干综合 | 日韩免费在线观看视频 | 蜜桃av一区二区三区 | ririsao久久精品一区 | 夜夜夜久久久 | 91网站在线看 | 曰韩毛片 | 午夜一区二区在线观看 | 久久噜| 午夜在线电影 | 亚洲人人 | 日本精品视频网站 | 久久夜色精品 | 精品成人佐山爱一区二区 | 国产欧美日韩综合精品 | 欧美精品一区二区三区蜜臀 | 中文字幕乱码亚洲精品一区 | 懂色av一区二区三区免费观看 | 成人激情在线 | 日韩欧美中文国 | 97国产一区二区精品久久呦 | 国产精品久久久久久久毛片 |