
(2013•石景山區一模)如圖,把兩個全等的Rt△AOB和Rt△ECD分別置于平面直角坐標系xOy中,使點E與點B重合,直角邊OB、BC在y軸上.已知點D (4,2),過A、D兩點的直線交y軸于點F.若△ECD沿DA方向以每秒
個單位長度的速度勻速平移,設平移的時間為t(秒),記△ECD在平移過程中某時刻為△E′C′D′,E′D′與AB交于點M,與y軸交于點N,C′D′與AB交于點Q,與y軸交于點P(注:平移過程中,點D′始終在線段DA上,且不與點A重合).
(1)求直線AD的函數解析式;
(2)試探究在△ECD平移過程中,四邊形MNPQ的面積是否存在最大值?若存在,求出這個最大值及t的取值;若不存在,請說明理由;
(3)以MN為邊,在E′D′的下方作正方形MNRH,求正方形MNRH與坐標軸有兩個公共點時t的取值范圍.