日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

邊形:分割成 . . 個小三角形.試推導邊形的內角和, 查看更多

 

題目列表(包括答案和解析)

閱讀材料:多邊形的頂點、邊上或內部的一點與多邊形各頂點的連線,能夠將多邊形分割成若干個小三角形。如圖給出了四邊形的具體分割方法,分別將四邊形分割成2個、3個、4個小三角形,可以得到四邊形的內角和為360°。

(1)請你按照上述方法將圖中的五邊形進行分割,并寫出得到的小三角形的個數;

分別分割成                                  個小三角形;

(2)試把這一結論推廣至邊形,分別寫出按照上述三種分割方法得到的小三角形的個數(按規律寫出結論即可,可以不畫圖),并根據其中的一種分割方法推導出邊形的內角和(畫出示意圖)。

邊形:分割成                                 個小三角形。試推導邊形的內角和。

查看答案和解析>>

問題提出
我們在分析解決某些數學問題時,經常要比較兩個數或代數式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
【小題1】已知:多項式M =2a2-a+1 ,N =a2-2a.試比較M與N的大小.
【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。                     
①這樣的長方形可以畫       個;
②所畫的長方形中哪個周長最小?為什么?

拓展延伸                                                                                               
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內接正方形,問哪條邊上的內接正方形面積最大?為什么?

查看答案和解析>>

問題提出
我們在分析解決某些數學問題時,經常要比較兩個數或代數式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
【小題1】已知:多項式M =2a2-a+1 ,N =a2-2a.試比較M與N的大小.
【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。                     
①這樣的長方形可以畫       個;
②所畫的長方形中哪個周長最小?為什么?

拓展延伸                                                                                               
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內接正方形,問哪條邊上的內接正方形面積最大?為什么?

查看答案和解析>>


【問題提出】我們在分析解決某些數學問題時,經常要比較兩個數或代數式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

解:由圖可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類比應用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿足a <b < c ,現將△ABC 補成長方形,
使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落
在長方形的這一邊的對邊上。
 
①這樣的長方形可以畫     個;
②所畫的長方形中哪個周長最小?為什么?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內接正方形,問哪條邊上的內接正方形面積最大?為什么?

查看答案和解析>>

【問題提出】我們在分析解決某些數學問題時,經常要比較兩個數或代數式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

解:由圖可知:

∵a≠b,∴>0.

∴M-N>0.∴M>N.

【類比應用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .

試比較M與N的大小.

(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,

AB為c)三邊滿足a <b < c ,現將△ABC 補成長方形,

使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落

在長方形的這一邊的對邊上。

 

①這樣的長方形可以畫     個;

②所畫的長方形中哪個周長最小?為什么?

【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內接正方形,問哪條邊上的內接正方形面積最大?為什么?

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 精品国产污网站污在线观看15 | 一区二区三区国产亚洲网站 | 欧美精品一区二区三区免费视频 | 国产精品久久久久久久久久 | 国产精品久久久久高潮色老头 | www.日韩av.com| 日本三级在线网站 | 黄色网在线看 | 在线成人av | 欧美区在线 | 日本精品久久 | 国产成人精品a | 久久com | 久久精品国产免费看久久精品 | 五月激情六月婷婷 | 影音先锋 色先锋 | 中文字幕第56页 | 日本美女影院 | 99久久精品国产一区二区三区 | 国产 日韩 欧美 中文 在线播放 | 中文字幕第一区 | 成人免费毛片嘿嘿连载视频 | av一级久久 | 国产福利91精品一区二区三区 | 91成人在线免费视频 | 成人小视频在线观看 | 成人激情在线 | 日韩在线一 | 中文字幕亚洲欧美日韩在线不卡 | 中文字幕在线第一页 | 欧美一区二区三区免费 | 99久久婷婷国产综合精品电影 | 黄色av电影在线观看 | 超碰免费在线观看 | 久久综合社区 | 免费不卡视频 | 91精品国产91综合久久蜜臀 | 国产精品久久国产精品 | 国产精品久久久久久久午夜片 | 亚洲第一国产精品 | 日本xxww视频免费 |