日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)已知函數.(Ⅰ)當時,求證:函數上單調遞增;(Ⅱ)若函數有三個零點,求的值;

(Ⅲ)若存在,使得,試求的取值范圍.

查看答案和解析>>

(本小題滿分16分) 設為實數,函數. (1)若,求的取值范圍; (2)求的最小值; (3)設函數,求不等式的解集.

查看答案和解析>>

(本小題滿分16分)

按照某學者的理論,假設一個人生產某產品單件成本為元,如果他賣出該產品的單價為元,則他的滿意度為;如果他買進該產品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現假設甲生產A、B兩種產品的單件成本分別為12元和5元,乙生產A、B兩種產品的單件成本分別為3元和20元,設產品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

(1)求關于的表達式;當時,求證:=

(2)設,當分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少? (3)記(2)中最大的綜合滿意度為,試問能否適當選取的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

(本小題滿分16分)已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;

(Ⅱ)求以點為圓心,且被直線截得的弦長4的⊙的方程;

(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分16分)已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;

(Ⅱ)求以點為圓心,且被直線截得的弦長為   4的⊙的方程;

(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

  1.2     2.有的素數不是奇數   3.      4.0      5.

  6.   7.  8.[0,2]    9.    10.-3   11.-1 

  12.④    13.     14.①③

 15.解:(1)因為,所以

    即 

    而  ,所以.故

    (2)因為 

         所以 

       由得   所以  

     從而的取值范圍是

 16.(1)證明:因為PB^平面ABCDMA^平面ABCD

     所以PBMA

     因PBÌ平面BPCMA (/平面BPC

     所以MA∥平面BPC.同理DA∥平面BPC

     因為MAÌ平面AMDADÌ平面AMD

     MAADA,所以平面AMD∥平面BPC

  (2)連接AC,設ACBDE,取PD中點F

     連接EFMF

     因ABCD為正方形,所以EBD中點.

     因為FPD中點,所以EF∥=PB

     因為AM∥=PB,所以AM∥=EF.所以AEFM為平行四邊形.所以MFAE

     因為PB^平面ABCDAEÌ平面ABCD,所以PB^AE.所以MF^PB

     因為ABCD為正方形,所以AC^BD

     所以MF^BD.所以MF^平面PBD.又MFÌ平面PMD

     所以平面PMD^平面PBD

   17.解:(1)  令

  則

  由于,則內的單調遞增區間為

(2)依題意, 由周期性 

                 

(3)函數為單調增函數,且當時,

     此時有

     當時,由于,而,則有

       即,即

     而函數的最大值為,且為單調增函數,

       則當時,恒有

     綜上,在內恒有,所以方程內沒有實數解.

18.解:(1)由題意得:(100-x)? 3000 ?(1+2x%) ≥100×3000,

   即x2-50x≤0,解得0≤x≤50,    又∵x>0   ∴0<x≤50;                        

     (2)設這100萬農民的人均年收入為y元,

   則y=   =

      即y=-[x-25(a+1)]2+3000+475(a+1)2     (0<x≤50) 

  (i)當0<25(a+1)≤50,即0<a≤1,當x=25(a+1)時,y最大;

 (ii)當25(a+1)>50,即a >1,函數y在(0,50]單調遞增,∴當x=50時,y取最大值.

       答:在0<a≤1時,安排25(a+1)萬人進入企業工作,在a>1時安排50萬人進入企業

             工作,才能使這100萬人的人均年收入最大.

  19.(1)解:由①知:;由③知:,即; ∴ 

      (2 ) 證明:由題設知:

           由,得,有

  設,則

     ∴

   即  ∴函數在區間[0,1]上同時適合①②③.

    (3) 證明:若,則由題設知:,且由①知,

          ∴由題設及③知:

        ,矛盾;

      若,則則由題設知:, 且由①知,

         ∴同理得:

        ,

         矛盾;故由上述知:

20.解: (1) 由題設知:對定義域中的均成立.

                 ∴.   

       即    ∴對定義域中的均成立.

                  ∴(舍去)或.       ∴ .                           

     (2) 由(1)及題設知:

                  設

     ∴當時,  ∴.                            

              當時,,即.

               ∴當時,上是減函數.    

              同理當時,上是增函數. 

     (3) 由題設知:函數的定義域為

               ∴①當時,有.  由(1)及(2)題設知:為增函數,由其值域為(無解);

   ②當時,有.由(1)及(2)題設知:為減函數, 由其值域為.

          (4) 由(1)及題設知:

      

         則函數的對稱軸.

        ∴函數上單調減.    

   ∴

     是最大實數使得恒有成立,

  

     ∴,即

 


同步練習冊答案
主站蜘蛛池模板: 久久午夜综合久久 | 欧美成人免费在线视频 | 日韩成人免费 | 91中文字幕| 国产成人免费在线视频 | 久久精品91久久久久久再现 | 亚洲精品视频国产 | 欧美一区2区三区4区公司贰佰 | 久久91久久久久麻豆精品 | 亚洲tv久久爽久久爽 | 久久精品电影 | 国产97碰免费视频 | 日韩成人精品在线观看 | 欧美三级一区 | 欧美日免费 | 久久精品国产99久久久 | 欧美精品导航 | 在线看片日韩 | 久久涩| 欧洲精品久久久久毛片完整版 | 天天久久婷婷 | 一区二区三区四区不卡视频 | 日本激情在线 | 一区二区av | 色视频免费在线观看 | 欧美一级二级三级视频 | av黄在线观看 | 亚洲精品久久久久久久久久久久久 | 日韩中文字幕在线免费 | 久久免费看 | 日日摸夜夜添夜夜添特色大片 | 国产不卡一区 | 免费一二区 | 91亚洲精品乱码久久久久久蜜桃 | 久久99精品久久久久国产越南 | 日本在线观看www | 99国产精品久久久久久久 | 亚洲av毛片一级二级在线 | 欧美性网| 一级一级特黄女人精品毛片 | 精品一区二区三区蜜桃 |