日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

選修4―4.坐標(biāo)系與參數(shù)方程 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn)的最大值與最小值.

查看答案和解析>>

(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn)的最大值與最小值.

查看答案和解析>>

(本小題滿分10分)

選修4-4:坐標(biāo)系與參數(shù)方程選講

已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)若將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的一半,分別得到曲線,求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系下,已知圓O:和直線

(1)求圓O和直線的直角坐標(biāo)方程;

(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

(本小題滿分10分)

選修4-4:坐標(biāo)系與參數(shù)方程選講

已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)若將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的一半,分別得到曲線,求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

一、選擇題:(每小題5分,共12小題,滿分60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

A

B

D

C

C

A

C

B

C

A

二、填空題:(每小題5分,共4小題,滿分20分)

13、                  14、

15、                16、   ①  ③ 

三、解答題答案及評(píng)分標(biāo)準(zhǔn):

17解:(I)

= ?

 …………………………4分

= .

                  20090107

                  函數(shù)的最大值為

                  當(dāng)且僅當(dāng)Z)時(shí),函數(shù)取得最大值為..………6分

                  (II)由Z),

                    (Z)

                  函數(shù)的單調(diào)遞增區(qū)間為[]( Z).………………12分

                   

                  18、(12分)

                  解:(1)設(shè)“這箱產(chǎn)品被用戶接收”為事件,……1分

                  .  …………………………4分

                  ∴n=2. ……………………………………6分

                  (2)的可能取值為1,2,3. ……………7分               

                  =,     =,  =,                                         

                  的概率分布列為:

                  1

                  2

                  3

                  …………10分

                   

                  =.   …………………12分

                  19.解:解法一:(Ⅰ)取AC中點(diǎn)D,連結(jié)SD、DB.

                  ∵SA=SC,AB=BC,

                  ∴AC⊥SD且AC⊥BD,……………………2分

                  ∴AC⊥平面SDB,又SB平面SDB,

                  ∴AC⊥SB.……………………………………4分

                  (Ⅱ)∵AC⊥平面SDB,AC平面ABC,

                  ∴平面SDB⊥平面ABC.

                  過N作NE⊥BD于E,NE⊥平面ABC,過E作EF⊥CM于F,連結(jié)NF,

                  則NF⊥CM.

                  ∴∠NFE為二面角N-CM-B的平面角.……………6分

                  ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

                  又∵NE⊥平面ABC,∴NE∥SD.

                  ∵SN=NB,∴NE=SD===,且ED=EB.

                  在正△ABC中,由平幾知識(shí)可求得EF=MB=

                  在Rt△NEF中,tan∠NFE==2∠NFE=

                  ∴二面角N-CM-B的余弦值為.………………………………8分

                  (Ⅲ)在Rt△NEF中,NF==

                  ∴S△CMN=CM?NF=,S△CMB=BM?CM=2.……………………10分

                  設(shè)點(diǎn)B到平面CMN的距離為h,

                  ∵VB-CMN=VN-CMB,NE⊥平面CMB,∴S△CMN?h=S△CMB?NE,

                  ∴h==.即點(diǎn)B到平面CMN的距離為.………12分

                  解法二:(Ⅰ)取AC中點(diǎn)O,連結(jié)OS、OB.∵SA=SC,AB=BC,

                  ∴AC⊥SO且AC⊥BO.

                  ∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC

                  ∴SO⊥面ABC,∴SO⊥BO.

                  如圖所示建立空間直角坐標(biāo)系O-xyz.………………………………2分

                  則A(2,0,0),B(0,2,0),

                  C(-2,0,0),S(0,0,2),

                  M(1,,0),N(0,).

                  =(-4,0,0),=(0,2,2),

                  ?=(-4,0,0)?(0,2,2)=0,……3分

                  ∴AC⊥SB.………………………………………………………4分

                  (Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).設(shè)n=(x,y,z)為平面CMN的一個(gè)法向量,

                        ?n=3x+y=0

                  則                        取z=1,則x=,y=-,………………6分

                  ?n=-x+z=0,

                  ∴n=(,-,1),

                  =(0,0,2)為平面ABC的一個(gè)法向量,

                  ∴cos(n,)==.………………………………………………7分

                  ∴二面角N-CM-B的余弦值為.………………………………………………8分

                  (Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,,0),n=(,-,1)為平面CMN的一個(gè)法向量,∴點(diǎn)B到平面CMN的距離d==.……………………………12

                        

                  20、(12分)

                  解:(1)①當(dāng)直線垂直于軸時(shí),則此時(shí)直線方程為與圓的兩個(gè)交點(diǎn)坐標(biāo)為,其距離為   滿足題意   ………1分

                  ②若直線不垂直于軸,設(shè)其方程為,即     

                  設(shè)圓心到此直線的距離為,則,得  …………3分       

                  ,                                    

                  故所求直線方程為    ……………………5分                           

                  綜上所述,所求直線為   ………6分                  

                  (2)設(shè)點(diǎn)的坐標(biāo)為),點(diǎn)坐標(biāo)為

                  點(diǎn)坐標(biāo)是                    ………………7分

                    即      …………8分          

                  又∵,∴       ………………10              

                   ∴點(diǎn)的軌跡方程是,       

                  軌跡是一個(gè)焦點(diǎn)在軸上的橢圓,除去短軸端點(diǎn)。       …………   12分 

                   

                  21、解:(I) …………………………………………… 2分

                      所以 ……………………………………………………………………5分

                     (II)設(shè)   

                      當(dāng) …………………………7分

                   …………………………………………9分

                      當(dāng)   

                      所以,當(dāng)的最小值為 … 12分

                  22(1)證明:如圖,連接OC,∵OA=OB,CA=CB  ∴OC⊥AB

                      ∴AB是⊙O的切線    …………………………………………4分

                     (2)解:∵ED是直徑,∴∠ECD=90°∴∠E+∠EDC=90°

                      又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,

                  ∴∠BCD=∠E

                      又∵∠CBD+∠EBC,∴△BCD∽△BEC

                      ∴  ∴BC2=BD•BE

                      ∵tan∠CED=,∴

                      ∵△BCD∽△BEC, ∴

                      設(shè)BD=x,則BC=2

                      又BC2=BD•BE,∴(2x)2=x•( x+6)

                      解得:x1=0,x2=2, ∵BD=x>0, ∴BD=2

                      ∴OA=OB=BD+OD=3+2=5   ……………………………………10分

                  23.(本小題滿分10分)選修4―4,坐標(biāo)系與參數(shù)方程

                  解:(1)直線的參數(shù)方程是………………5分

                  (2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t2,則點(diǎn)A,B的坐標(biāo)分別為

                  以直線L的參數(shù)方程代入圓的方程整理得到

                            ①     ……………………8分

                  因?yàn)閠1和t2是方程①的解,從而t1t2=-2。

                  所以|PA|?|PB|= |t1t2|=|-2|=2。………………………10分

                  24.(本小題滿分10分)選修4―5;不等式選講

                  證明:(1)……………………2分

                    …………4分

                   當(dāng)且僅當(dāng)時(shí),等號(hào)成立     ……………………6分

                  (2)          ax2+by2=(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2。……10分

                      

                   

                   

                  主站蜘蛛池模板: 一区二区免费视频 | 一区二区不卡 | 国产美女自拍视频 | 日韩一区二区在线视频 | 999精品视频 | 色精品 | 久久窝 | 久久福利 | 成人二区 | 国际精品久久 | 国产三区在线观看 | 一区二区精品在线 | 精品人人 | 精品国产乱码久久久久久88av | 欧美成人性生活 | 国产夜夜夜 | 成人免费黄色片 | 久久无码精品一区二区三区 | 高清精品一区二区 | 日本二区 | 在线观看一级片 | 欧美一级二级视频 | 精品国产污网站污在线观看15 | 久久久久久亚洲 | 中文字幕在线看 | 日韩视频免费在线观看 | 一级免费片 | 日本免费不卡 | 国产日韩一区二区 | 国产亚洲网站 | 久久国产香蕉视频 | 久久精品国产视频 | 欧美黄视频在线观看 | 日韩欧美国产精品 | 中文在线亚洲 | 日韩精品亚洲专区在线观看 | 亚洲精品视频在线看 | 欧美日本国产欧美日本韩国99 | 久久天堂av综合合色蜜桃网 | 国产美女高潮一区二区三区 | 国产成人精品一区二区三区四区 |