日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設是的兩個極值點,為的導函數. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)設的兩個極值點,的導函數是

(1)如果 ,求證:  ;

(2)如果 ,求的取值范圍 ;

(3)如果 ,且時,函數的最小值為 ,求的最大值 .

查看答案和解析>>

設函數f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的導函數.
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函數f(x)的解析式;
(Ⅱ)若c=-6,函數f(x)的兩個極值點為x1,x2滿足-1<x1<1<x2<2.設λ=a2+b2-6a+2b+10,試求實數λ的取值范圍.

查看答案和解析>>

若函數y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數y=f(x)的極值點.已知a,b是實數,1和-1是函數f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設函數g(x)的導函數g'(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

設函數f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的導函數.
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函數f(x)的解析式;
(Ⅱ)若c=-6,函數f(x)的兩個極值點為x1,x2滿足-1<x1<1<x2<2.設λ=a2+b2-6a+2b+10,試求實數λ的取值范圍.

查看答案和解析>>

若函數y=f(x)在x=x處取得極大值或極小值,則稱x為函數y=f(x)的極值點.已知a,b是實數,1和-1是函數f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設函數g(x)的導函數g'(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.A     2.D     3.D     4.C     5.C    6.B    7.C    8.A

二、填空題(本大題共6小題,每小題5分,共30分)

9.                  10.60                   11.   

12.(1) (2)               13.1,                  14.,

注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

三、解答題(本大題共6小題,共80分)

15.(本小題滿分13分)

解:(Ⅰ)設等比數列的公比為,依題意有,    (1)

,將(1)代入得.所以.

于是有                             ………………3分

解得                             ………………6分

是遞增的,故.                   ………………7分

所以.                                         ………………8分

   (Ⅱ),.                     ………………10分

故由題意可得,解得.又, …………….12分

所以滿足條件的的最小值為13.                           ………………13分

16. (本小題滿分13分)

解:(Ⅰ)由,

   所以.                     …………………4分

   于是. …………7分

  

(Ⅱ)由正弦定理可得,

     所以.                                …………………….10分

.         ………………11分

,

解得.即=7 .                                           …………13分

17.(本小題滿分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面

.

是矩形,的中點,

==

=

⊥平面

平面,故平面⊥平面          ……………………5分

 (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內作,垂足為,則⊥平面.

        ∴∠與平面所成的角.                ……………………7分

∴在Rt△中,=.  

 .  

與平面所成的角為 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結,則

        ∴∠為二面角的平面角.             ……………………….11分

∵在Rt△中,=,在Rt△中, .

∴在Rt△中,     ………13分

即二面角的大小為arcsin.          ………………………………14分

 

解法二:

如圖,以為原點建立直角坐標系

(0,0,0),(0,2,0),

(0,2,2),,0),

,0,0).

   (Ⅰ) =(,0),=(,0),

         =(0,0,2),

?=(,0)?(,0)=0,

 ? =(,0)?(0,0,2)= 0.

⊥平面,又平面,故平面⊥平面. ……5分

   (Ⅱ)設與平面所成角為.

        由題意可得=(,0),=(0,2,2 ),=(,0).

        設平面的一個法向量為=(,1),

        由.

          .

與平面所成角的大小為.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一個法向量,

        又⊥平面,平面的一個法向量=(,0,0),

        ∴設的夾角為,得

        ∴二面角的大小為.      ………………………………14分

18. (本小題滿分13分)

解:(Ⅰ)設事件表示甲運動員射擊一次,恰好擊中9環以上(含9環),則

.                            ……………….3分

甲運動員射擊3次均未擊中9環以上的概率為

.                            …………………5分

所以甲運動員射擊3次,至少有1次擊中9環以上的概率為

.                               ………………6分

    (Ⅱ)記乙運動員射擊1次,擊中9環以上為事件,則

                        …………………8分

由已知的可能取值是0,1,2.                       …………………9分

;

;

.

的分布列為

0

1

2

0.05

0.35

0.6

                                               ………………………12分

所以

故所求數學期望為.                          ………………………13分

19. (本小題滿分14分)

解:(Ⅰ)由已知 ,故,所以直線的方程為.

      將圓心代入方程易知過圓心 .      …………………………3分

        (Ⅱ) 當直線軸垂直時,易知符合題意;        ………………4分

當直線與軸不垂直時,設直線的方程為,由于,

所以,解得.

故直線的方程為.        ………………8分

        (Ⅲ)當軸垂直時,易得,,又

,故. 即.                   ………………10分

的斜率存在時,設直線的方程為,代入圓的方程得

.則

,即,

.又由,

.

.

綜上,的值為定值,且.                …………14分

另解一:連結,延長交于點,由(Ⅰ)知.又,

故△∽△.于是有.


同步練習冊答案
主站蜘蛛池模板: 欧洲亚洲成人 | 日韩中文字幕在线播放 | 91污软件 | 黄色毛片视频网站 | 日韩在线观看视频免费 | 涩涩涩涩| 久久网日本 | 久久久久一区二区三区 | 秋霞毛片 | 欧美日韩亚洲国产 | 亚洲一区二区三区日韩 | 亚洲无吗视频 | 黄色片免费看. | 久久99国产精品久久99果冻传媒 | 国产精品二区三区 | 一级视频黄色 | 日韩精品| 精品黑人一区二区三区久久 | 日本全黄裸体片 | 欧美精品综合在线 | 成人精品一区二区三区 | 日韩视频专区 | 亚洲午夜精品视频 | 国产精品永久免费 | 日韩在线精品 | 欧美一级精品片在线看 | 日韩精品久久 | 欧美日韩三级在线 | 特级黄一级播放 | 一区二区久久 | 欧美一区二区免费 | julia一区二区三区中文字幕 | 日本天天色 | 专干老肥女人88av | 一区二区三区在线播放 | 免费 视频 1级 | 69久久99精品久久久久婷婷 | 九九综合九九 | 狠狠狠狠狠操 | 天天躁日日躁狠狠躁av麻豆 | 91精品久久久久久久久 |