題目列表(包括答案和解析)
(1+x)2 |
A、0 | B、1 | C、2 | D、3 |
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
設函數,其中
為自然對數的底數.
(1)求函數的單調區間;
(2)記曲線在點
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問利用由已知,所以
,
由,得
,
所以,在區間
上,
,函數
在區間
上單調遞減;
在區間
上,
,函數
在區間
上單調遞增;
第二問中,因為,所以曲線
在點
處切線為
:
.
切線與
軸的交點為
,與
軸的交點為
,
因為,所以
,
, 在區間
上,函數
單調遞增,在區間
上,函數
單調遞減.所以,當
時,
有最大值,此時
,
解:(Ⅰ)由已知,所以
,
由
,得
, 所以,在區間
上,
,函數
在區間
上單調遞減;
在區間上,
,函數
在區間
上單調遞增;
即函數的單調遞減區間為
,單調遞增區間為
.
(Ⅱ)因為,所以曲線
在點
處切線為
:
.
切線與
軸的交點為
,與
軸的交點為
,
因為,所以
,
, 在區間
上,函數
單調遞增,在區間
上,函數
單調遞減.所以,當
時,
有最大值,此時
,
所以,的最大值為
(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。
區間 |
中點 |
|
區間長度 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解:設函數,其圖象在
上是連續不斷的,且
在
上是單調遞______(增或減)。先求
_______,
______,
____________。
所以在區間____________內存在零點
,再填上表:
下結論:_______________________________。
(可參考條件:,
;符號填+、-)
區間 | 中點![]() | ![]() | 區間長度 |
| | | |
| | | |
| | | |
| | | |
| | | |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com