日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖4.已知橢圓C:的左.右焦點分別是F1.F2.M是橢圓C的上頂點.橢圓C的右準線與x軸交于點N.且..(Ⅰ)求橢圓C的標準方程, 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓C:的左、右焦點為F1、F2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.

(1)求橢圓C的方程;

(2)過點Q(-4,0)任作一直線l交橢圓C于M,N兩

點,記=λ·.若在線段MN上取一點R,使得=-λ·,試判斷當直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程,若不在,請說明理由.

查看答案和解析>>

如圖,已知橢圓C:
x2
b2
+
y2
a2
=1(a>b>0)
的左、右焦點分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點E在第一象限,與橢圓C相交于A、B兩點,且
F2B
=λ
AF2

(1)求證:切線l的斜率為定值;
(2)若動點T滿足:
ET
=μ(
EF1
+
EF2
),μ∈(0,
1
2
)
,且
ET
OT
的最小值為-
5
4
,求拋物線P的方程;
(3)當λ∈[2,4]時,求橢圓離心率e的取值范圍.

查看答案和解析>>

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點為F1,F2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(-4,0)任作一動直線l交橢圓C于M,N兩點,記
MQ
=-λ•
QN
若在線段MN上取一點R,使得
MR
=λ•
RN
,試判斷當直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程;若不在,請說明理由.

查看答案和解析>>

精英家教網如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點,右焦點分別為A、F,右準線為m.圓D:x2+y2+x-3y-2=0.
(1)若圓D過A、F兩點,求橢圓C的方程;
(2)若直線m上不存在點Q,使△AFQ為等腰三角形,求橢圓離心率的取值范圍.
(3)在(1)的條件下,若直線m與x軸的交點為K,將直線l繞K順時針旋轉
π
4
得直線l,動點P在直線l上,過P作圓D的兩條切線,切點分別為M、N,求弦長MN的最小值.

查看答案和解析>>

如圖,已知橢圓C:數學公式+數學公式=1(a>b>0)的左、右焦點為F1,F2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(-4,0)任作一動直線l交橢圓C于M,N兩點,記數學公式=-λ•數學公式若在線段MN上取一點R,使得數學公式=λ•數學公式,試判斷當直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程;若不在,請說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵

,∴,當且僅當時取"=".??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當且僅當時取"=".

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個球中數字最大者為3.

①三次取球均出現最大數字為3的概率;??????????????????????????????????????? 1分

②三次取球中有2次出現最大數字3的概率;???????????????????? 3分

③三次取球中僅有1次出現最大數字3的概率.????????????????? 5分

∴P(ξ=3)=P1+P2+P3=.?????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)在ξ=k時, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).???????? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

∴ξ的數學期望Eξ=1×+2×+3×+4× = .???????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設O是AA1的中點,連接BO,則BO⊥AA1. 2分

∵側面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O為原點,建立如圖空間直角坐標系,則.則.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

是平面ABC的一個法向量,

,則.設A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.   9分

.???????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ),對稱軸方程為,故函數在[0,1]上為增函數,∴.?????????????????????????????????????????????????????????????????????????????????????? 2分

時,.??????????????????????????????????????????????????????????????????????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????????????????????????????????????????? 4分

,∴數列是以為首項,為公比的等比數列.

,∴.?????????????????????????????????????????????????? 6分

(Ⅱ)∵,∴

???????????????????????????????????????????????????????? 7分

可知:當時,;當時,;當時,

?????????????????????????????????????????????????????????????????????????? 10分

可知存在正整數或6,使得對于任意的正整數n,都有成立.???????????? 12分

 

21.解:(Ⅰ)設

.∵

,∴,∴.??????????????????????????????????????????????????????????????? 2分

則N(c,0),M(0,c),所以

,則

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 5分

消去y得

∵直線l與橢圓交于兩個不同點,設

,???????????????????????????????????????????????????????????????? 7分

.?????????????????? 8分

.???????????????????????????????????????? 9分

(或).

,則

,則

時單調遞增,????????????????????????????????????????????????????????????????????????? 11分

∴S關于μ在區間單調遞增,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

(或

∴S關于u在區間單調遞增,?????????????????????????????????????????????????????????????????????? 11分

.)????????????????????????????????????????????????????????? 12分

 

22.解:(Ⅰ)因為,則,     1分

時,;當時,

上單調遞增;在上單調遞減,

∴函數處取得極大值.????????????????????????????????????????????????????????????????????? 2分

∵函數在區間(其中)上存在極值,

解得.????????????????????????????????????????????????????????????????????????????????? 3分

(Ⅱ)不等式,即為,?????????????????????????????????????????? 4分

,∴,??????? 5分

,則,∵,∴上遞增,

,從而,故上也單調遞增,

.???????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??????????? 8分

,????????????????????????????????????????????????????? 9分

………

,?????????????????????????????????????????????????????????????????????????????????? 10分

疊加得:

.???????????????????????????????????????????????????????????????????????? 12分

.????????????????????????????????????????????????????????????????????????? 14分

 

 

 

 

 

 

 

 

 

 


同步練習冊答案
主站蜘蛛池模板: 91亚洲视频在线观看 | 在线免费色视频 | 成人日韩 | zzz444成人天堂7777 | 蜜桃色网 | 亚洲国产成人精品久久 | 欧美一级网 | 亚洲一区在线日韩在线深爱 | 国产成人精品一区二区仙踪林 | 欧美a免费 | 九色av| 在线成人 | 国产二区三区 | 99热在线播放 | 国产高清在线精品一区二区三区 | 国产一二三区不卡 | 久久精品国产99久久久 | 国产精品女教师av久久 | 在线中文字幕视频 | 亚洲久久在线 | 黄色成人在线 | 欧美日韩久久精品 | 91精品久久久久久久久中文字幕 | 日本久久久亚洲精品 | 97超碰人人在线 | 日韩国产精品一区二区三区 | 99热精品久久 | 久在草视频 | 日韩在线国产 | 日韩特黄一级欧美毛片特黄 | 国产日韩一区二区 | 亚洲大尺度视频 | 日韩视频在线视频 | www91在线观看 | 久久在线播放 | 久久99一区二区 | 午夜一区二区三区在线观看 | 波多野结衣一二三区 | 自拍视频网站 | 午夜精品久久久久久久99黑人 | 亚洲一区二区三区在线播放 |