題目列表(包括答案和解析)
一自來水廠用蓄水池通過管道向所管轄區域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區域供水
千噸.
(1)多少小時后,蓄水池存水量最少?
(2)當蓄水池存水量少于3千噸時,供水就會出現緊張現象,那么當日出現這種情況的時間有多長?
【解析】第一問中(1)設小時后,蓄水池有水
千噸.依題意,
當
,即
(小時)時,蓄水池的水量最少,只有1千噸
第二問依題意, 解得:
解:(1)設小時后,蓄水池有水
千噸.………………………………………1分
依題意,…………………………………………4分
當,即
(小時)時,蓄水池的水量最少,只有1千噸. ………2分
(2)依題意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,當天有8小時會出現供水緊張的情況
在平面直角坐標系中,曲線
與坐標軸的交點都在圓
上.
(1)求圓的方程;
(2)若圓與直線
交于
、
兩點,且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關系的運用。
(1)曲線與
軸的交點為(0,1),
與軸的交點為(3+2
,0),(3-2
,0) 故可設
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因為圓與直線
交于
、
兩點,且
。聯立方程組得到結論。
已知奇函數時,取極小值
(1)求的解析式;
(2)試判斷:當的圖象上是否存在兩點,使這兩點處的切線的夾角等于45°
(3)試判斷方程上是否有解?若有,指出解的個數,若沒有.說明理由.
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關系是
,結合
,解得。
(2)由,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
求圓心在直線y=-2x上,并且經過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯立解得x=1,y=-2,即圓心(1,-2)
∴r==
,
故所求圓的方程為:+
=2
解:法一:
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==
,
………………………10分
故所求圓的方程為:+
=2
………………………12分
法二:由條件設所求圓的方程為:+
=
, ………………………6分
解得a=1,b=-2, =2
………………………10分
所求圓的方程為:+
=2
………………………12分
其它方法相應給分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com