日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

變式:設函數.其中 查看更多

 

題目列表(包括答案和解析)

規定Cmx=,其中x∈R,m是正整數,且Cx=1,這是組合數Cmn(n、m是正整數,且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設x>0,當x為何值時,取得最小值?
(3)組合數的兩個性質;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數)的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
變式:規定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數,且Ax=1,這是排列數Anm(n,m是正整數,且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數的兩個性質:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數)是否都能推廣到Axm(x∈R,m是正整數)的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(3)確定函數Ax3的單調區間.

查看答案和解析>>

已知函數其中為自然對數的底數, .(Ⅰ)設,求函數的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當時,.結合表格和導數的知識判定單調性和極值,進而得到最值。

第二問中,∵,      

∴原不等式等價于:,

, 亦即

分離參數的思想求解參數的范圍

解:(Ⅰ)當時,

上變化時,的變化情況如下表:

 

 

1/e

時,

(Ⅱ)∵,      

∴原不等式等價于:,

, 亦即

∴對于任意的,原不等式恒成立,等價于恒成立,

∵對于任意的時, (當且僅當時取等號).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,求方程在區間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(3)根據本題條件我們可以知道,函數的性質取決于變量的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.
(1)若,求方程在區間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,求方程在區間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(3)根據本題條件我們可以知道,函數的性質取決于變量的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 国产精品第一国产精品 | 四虎影片| 日本中文字幕一区二区 | 精品av| av免费在线观看网站 | 四虎动漫 | 91精品一区二区三区久久久久久 | 91在线资源| 婷婷激情五月 | 精品国产aⅴ一区二区 | 销魂美女一区二区三区视频在线 | 日韩av免费 | 毛片黄片视频 | 天堂va | 亚洲xxxxxx| 日韩在线中文字幕 | 亚洲精品一区二区三区在线播放 | 男女靠逼的视频 | 久在线| 欧美日韩在线精品 | 一区二区久久久 | 国产综合精品视频 | 亚洲aⅴ天堂av在线电影软件 | 涩爱网| 嫩草懂你| 品久久久久久久久久96高清 | 欧美精品一二三 | 日韩成人在线视频 | 屁屁影院一区二区三区 | 一级毛片免费看 | 国产精品99久久久久久动医院 | 国产精品永久免费 | 亚洲国产精品99 | 精品国产青草久久久久福利 | 美女人人操 | 日本二区| 极品视频在线 | 日韩精品一区二区三区在线观看 | 久久99国产精品久久99大师 | 日本欧美中文字幕 | 亚洲一区中文字幕 |