題目列表(包括答案和解析)
給出問題:已知滿足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為
.由正弦定理可得,原式等價于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果. .
已知二次函數(shù)的二次項系數(shù)為
,且不等式
的解集為
,
(1)若方程有兩個相等的根,求
的解析式;
(2)若的最大值為正數(shù),求
的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當(dāng)f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是
學(xué)校要用三輛車從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為
;汽車走公路②堵車的概率為
,不堵車的概率為
,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為
,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數(shù)
的分布列和數(shù)學(xué)期望。
【解析】第一問中,由已知條件結(jié)合n此獨立重復(fù)試驗的概率公式可知,得
第二問中可能的取值為0,1,2,3
,
,
從而得到分布列和期望值
解:(I)由已知條件得 ,即
,則
的值為
。
(Ⅱ)可能的取值為0,1,2,3
,
,
的分布列為:(1分)
|
0 |
1 |
2 |
3 |
|
|
|
|
|
所以
如圖,已知圓錐體的側(cè)面積為
,底面半徑
和
互相垂直,且
,
是母線
的中點.
(1)求圓錐體的體積;
(2)異面直線與
所成角的大小(結(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得
,故
從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得
,
故從而體積
.
(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
如圖,測量河對岸的塔高時,可以選與塔底
在同一水平面內(nèi)的兩個測點
.現(xiàn)測得
,并在點
測得塔頂
的仰角為
,
求塔高
(精確到
,
)
【解析】本試題主要考查了解三角形的運用,利用正弦定理在中,得到
,然后在
中,利用正切值可知
解:在中,
由正弦定理得:,所以
在中,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com