日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅰ)求的取值范圍, (Ⅱ)過A.B兩點分別作此拋物線的切線.兩切線相交于N點. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)直線mykx1與雙曲線的左支交于AB兩點,求k的取值范圍;

(Ⅱ)直線l過點P(-2,0)及線段AB的中點,CDy軸上一條線段,對任意的直線l都與線段CD無公共點試問CD長的最大值是否存在?若存在,請求出;若不存在,請說明理由

 

查看答案和解析>>

(Ⅰ)直線mykx1與雙曲線的左支交于AB兩點,求k的取值范圍;

(Ⅱ)直線l過點P(-2,0)及線段AB的中點,CDy軸上一條線段,對任意的直線l都與線段CD無公共點試問CD長的最大值是否存在?若存在,請求出;若不存在,請說明理由

 

查看答案和解析>>

已知A、B、C是橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點,其中點A的坐標為(2
3
,0)
,BC過橢圓M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求橢圓M的方程;
(2)過點(0,t)的直線l(斜率存在時)與橢圓M交于兩點P、Q,設D為橢圓M與y軸負半軸的交點,且|
DP
|=|
DQ
|
,求實數t的取值范圍.

查看答案和解析>>

已知A、B兩點在拋物線C:x2=4y上,點M(0,4)滿足
MA
BM

(1)求證:
OA
OB

(2)設拋物線C過A、B兩點的切線交于點N.
①求證:點N在一條定直線上;
②設4≤λ≤9,求直線MN在x軸上截距的取值范圍.

查看答案和解析>>

經過A(2,0),以(2cosθ-2,sinθ)為方向向量的直線與經過B(-2,0),以(2+2cosθ,sinθ)為方向向量的直線相交于點M(x,y),其中θ≠kπ.
(I)求點M(x,y)的軌跡方程;
(II)設(I)中軌跡為曲線C,F1(-
3
,0),F2(
3
,0)
,若曲線C內存在動點P,使得|PF1|、|OP|、|PF2|成等比數列(O為坐標原點),求
PF1
PF2
的取值范圍.

查看答案和解析>>

一.選擇題:DABBB ACACA

解析:1:由題干可得:故選.

2:為拋物線的內部(包括周界),為動圓的內部(包括周界).該題的幾何意義是為何值時,動圓進入區域,并被所覆蓋.

是動圓圓心的縱坐標,顯然結論應是,故可排除,而當時,(可驗證點到拋物線上點的最小距離為).故選.

 

3:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函數,得f(-0.5)=-f(0.5)=-0.5,所以選B.

 

4:取a=100,b=10,此時P=,Q==lg,R=lg55=lg,比較可知選PQR,所以選B

5: f(x+)=sin[-2(x+)]+sin[2(x+)]=-f(x),而f(x+π)=sin[-2(x+π)]+sin[2(x+π)]=f(x).所以應選B;

 

6:在同一直角坐標系中作出圓x+y=4和直線4x+3y-12=0后,由圖可知距離最小的點在第一象限內,所以選A.

7:不等式的“極限”即方程,則只需驗證x=2,2.5,和3哪個為方程的根,逐一代入,選C.

8:當正n棱錐的頂點無限趨近于底面正多邊形中心時,則底面正多邊形便為極限狀態,此時棱錐相鄰兩側面所成二面角α→π,且小于π;當棱錐高無限大時,正n棱柱便又是另一極限狀態,此時α→π,且大于π,故選(A).

9:取滿足題設的特殊函數f(x)=x,g(x)=|x|,則f(b)-f(-a)=a+b,g(a)-g(-b)=a-b,又f(a)-f(-b)=a+b,g(b)-g(-a)=b-a;∴選(C).

 

10:作直線和圓的圖象,從圖中可以看出:

的取值范圍應選(A).

 

 

二.填空題:11、;  12、

13、;   14、(x-1)2+(y-1)2=2;15、

解析:

11根據不等式解集的幾何意義,作函數

函數的圖象(如圖),從圖上容易得出實數a的取

值范圍是

12: 應用復數乘法的幾何意義,得

     

      

于是        故應填 

13:中獎號碼的排列方法是: 奇位數字上排不同的奇數有種方法,偶位數字上排偶數的方法有,從而中獎號碼共有種,于是中獎面為

  故應填

14:解:由=

,化簡得(x-1)2+(y-1)2=2

15.解:依題意,=2,5,=15,=

三.解答題:

16.解:(1)由,解之得  ……………………5分

(2)  …………………………9分

         …………………………11分

  …………………………12分

17.解:(I)的取值為1,3,又

    ξ

    1

    3

    P

     

     

           ∴ξ的分布列為                                   …………………………5分

     

           ∴Eξ=1×+3×=.                        ………………………………6分

       (II)當S8=2時,即前八秒出現“○”5次和“×”3次,又已知

           若第一、三秒出現“○”,則其余六秒可任意出現“○”3次;

           若第一、二秒出現“○”,第三秒出現“×”,則后五秒可任出現“○”3次.

           故此時的概率為…………12分

    18.解:(Ⅰ)∵函數是奇函數,則

      ∴   …………………………2分

       解得

    .   …………………………5分

    (Ⅱ)由(Ⅰ)知,     ∴,   ………………6分

      …………………………8分

     ∴,即函數在區間上為減函數.   …………………………9分

    (Ⅲ)由=0,   …………………………11分

      ∵當,∴ , 

     即函數在區間上為增函數   …………………………13分

    是函數的最小值點,即函數取得最小值.  ………14分

    19.解:(Ⅰ)設正三棱柱的側棱長為.取中點,連

    是正三角形,.  …………………………2分

    又底面側面,且交線為側面

    ,則直線與側面所成的角為.   ……………………4分

    中,,解得

    此正三棱柱的側棱長為.  …………………………5分

    (Ⅱ)如圖,建立空間直角坐標系

    .  …………………………7分

    為平面的法向量.

                           …………………………9分

    又平面的一個法向量

    結合圖形可知,二面角的大小為  …………………………11分

     

    (Ⅲ):由(Ⅱ)得  …………………………12分

    到平面的距離

                                                 …………………………14分

    20.解:(Ⅰ)當時,原不等式即,解得

        ∴------------------------------2分

    (Ⅱ)原不等式等價于

    ……………………………………………..4分

    ………………………………………………………..6分

    ……8分

    (Ⅲ)∵

    n=1時,;n=2時,

    n=3時,;n=4時,

    n=5時,;n=6時,…………………………………………9分

    猜想: 下面用數學歸納法給出證明

    ①當n=5時,,已證…………………………………………………….10分

    ②假設時結論成立即

    那么n=k+1時,

    范圍內,恒成立,則,即

    由①②可得,猜想正確,即時,…………………………………..  13分

    綜上所述:當n=2,4時,;當n=3時,;當n=1或;---14分

    21.解:(Ⅰ)由條件得M(0,-),F(0,).設直線AB的方程為

           y=kx+,A(),B()

           則,Q().   …………………………2分

           由.

           ∴由韋達定理得+=2pk,?=-    …………………………3分

           從而有= +=k(+)+p=2pk÷p.

           ∴?的取值范圍是.      …………………………4分

       (Ⅱ)拋物線方程可化為,求導得.

           ∴       =y     .

           ∴切線NA的方程為:y-.

           切線NB的方程為:  …………………………6分

           由解得∴N()

           從而可知N點Q點的橫坐標相同但縱坐標不同.

           ∴NQ∥OF.即    …………………………7分

           又由(Ⅰ)知+=2pk,?=-p

           ∴N(pk,-).      …………………………8分

           而M(0,-)  ∴

           又. ∴.       …………………………9分

       (Ⅲ)由.又根據(Ⅰ)知

           ∴4p=pk,而p>0,∴k=4,k=±2.   …………………………10分

           由于=(-pk,p),  

           ∴

           從而.         …………………………11分

           又||=,||=

           ∴.

           而的取值范圍是[5,20].

           ∴5≤5p2≤20,1≤p2≤4.   …………………………13分

           而p>0,∴1≤p≤2.

           又p是不為1的正整數.

           ∴p=2.

           故拋物線的方程:x2=4y.      …………………………14分

    主站蜘蛛池模板: 激情91 | a在线观看 | 国产精品一区免费观看 | 欧美韩国日本一区 | 成人国产精品一区 | 亚洲欧美中文日韩在线v日本 | 在线播放91 | 亚洲二区视频 | 欧洲精品久久久 | 欧美成人免费 | 久久精品电影 | 国产精精品 | 成年人在线视频免费观看 | 日韩一区二区三区av | 黄色av网站在线观看 | 日韩一区二区三区在线观看 | 久久国产一区 | 日韩无 | 日本久久精品电影 | 日本在线观看www | 欧美久久久久久久久久久久 | 国产欧美一区在线 | 日本视频在线观看 | 欧美9999| 欧美猛交ⅹxxx乱大交视频 | 国产日韩精品视频 | 日韩中文一区二区三区 | 亚洲精品久久久久国产 | 91麻豆精品国产91久久久更新时间 | 亚洲成人av在线播放 | 精品成人 | 骚黄视频 | 欧美在线影院 | 黄影院| 欧美一级免费大片 | 亚洲一区二区三区四区在线观看 | 欧美日韩在线一区二区 | 欧美一级欧美三级在线观看 | 欧美麻豆| 2018啪一啪| 一区二区高清 |