日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

坐標(biāo)系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0 (1)求圓系圓心的軌跡方程; (2)證明圓心軌跡與動圓相交所得的公共弦長為定值; 查看更多

 

題目列表(包括答案和解析)

(10分)坐標(biāo)系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動圓相交所得的公共弦長為定值;

查看答案和解析>>

坐標(biāo)系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值

查看答案和解析>>

坐標(biāo)系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值

查看答案和解析>>

坐標(biāo)系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值

查看答案和解析>>

坐標(biāo)系與參數(shù)方程

已知圓錐曲線為參數(shù))和定點(diǎn)F1,F(xiàn)2是圓錐曲線的左右焦點(diǎn)。

(1)求經(jīng)過點(diǎn)F2且垂直于直線AF1的直線l的參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程。

 

查看答案和解析>>

一、選擇題:(每題5分,共60分)

<strike id="2wekw"></strike>
<ul id="2wekw"><pre id="2wekw"></pre></ul>
  • <strike id="2wekw"></strike>

      20080416

      二、填空題:每題5分,共20分)

      13.   14.;  15.a=-1或a=-;   

      16.①④

      17.解:(1)

      .又.(6分)

      (2)由

      .(6分)

      18.證法一:向量法

      證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

      又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

      (2)取B1C的中點(diǎn)D,連接FD、BD

      ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

      ∴四邊形EFBD為平行四邊形    ∴EF∥BD

      又BD平面BCC1B1   

      ∴EF∥面BCC1B1

      (3)過B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

      ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

      在Rt△BCE中有BE=,BC=,CE=,BH=

      又∠A1CA=      ∴BB1=AA1=AC=2   

      ∴tan∠B1HB=

      19.解(1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

      設(shè)圓的圓心坐標(biāo)為(x,y),

      為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

        (2)有方程組得公共弦的方

      程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

      ∴弦長l=(定值)        (5分)

       

      20.(1)合格結(jié)果:0,1,2,3   相應(yīng)月盈利額X=-30,5,40,75

      (2)P(X≥40)=P(X=40)+P(X=75)=

      (3)

      X

      -30

      5

      40

      75

      P

       

      EX=54(元)    ∴6個月平均:6×54=324(元)

      21.(1)由已知:   

      依題意得:≥0對x∈成立

      ∴ax-1≥0,對x∈恒成立,即a≥,對x∈恒成立,

      ∴a≥(max,即a≥1.

      (2)當(dāng)a=1時,,x∈[,2],若x∈,則

      若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

      又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=

      ∵e3>2.73=19.683>16,

      ∴f()-f(2)>0   

      ∴f()>f(2)  

      ∴f(x)在[,2]上最大值是f(

      ∴f(x)在[,2]最大1-ln2,最小0

      (3)當(dāng)a=1時,由(1)知,f(x)=+lnx在

      當(dāng)n>1時,令x=,則x>1     ∴f(x)>f(1)=0

      即ln>

      22.解:(1)設(shè)橢圓方程為(a>b>0)

           ∴橢圓方程

      (2) ∵直線∥DM且在y軸上的截距為m,∴y=x+m

      與橢圓交于A、B兩點(diǎn)

      ∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

      (3)設(shè)直線MA、MB斜率分別為k1,k2,則只要證:k1+k2=0

      設(shè)A(x1,y1),B(x2,y2),則k1=,k2=

      由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

      而k1+k2=+= (*)

      又y1=x1+m  y2=x2+m

      ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

      =x1x2+(m-2)(x1+x2)-4(m-1)

      =2m2-4+(m-2)(-m)-4(m-1)

        =0

      ∴k1+k2=0,證之.

       

      主站蜘蛛池模板: 欧美1区 | 国产在线h | 日韩毛片免费在线观看 | 成人在线免费网站 | 欧美在线综合 | 狠狠色噜噜狠狠狠狠69 | 91精品久久久久久久 | 在线播放91 | 嫩草影院网站入口 | 国产免费黄视频 | 久久成人在线视频 | 在线日韩 | 国产精品成av人在线视午夜片 | www久久久久 | 欧美爱爱视频 | 成人一区二区在线播放 | 欧美激情在线狂野欧美精品 | 成人国产免费视频 | 97超碰在线免费 | 九九综合| 日本不卡免费新一二三区 | 成人激情视频在线免费观看 | 日韩精品一区二区三区四区视频 | 91精品国产乱码久久久久久久久 | 精品一区二区免费视频 | 精品不卡| 激情欧美一区二区三区中文字幕 | 成人a网| 亚洲精品亚洲人成人网 | 99国产精品久久久久久久 | 色www精品视频在线观看 | 成人激情视频在线观看 | 欧美日韩在线观看中文字幕 | 毛片日韩 | 精品国产麻豆 | 日韩一区二区三免费高清在线观看 | 成人精品视频在线 | 欧美成人免费 | 欧美激情一区二区三区蜜桃视频 | 久久综合伊人77777 | 中文字幕视频在线免费观看 |