日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

21.(本小題為必做題.滿分12分) 查看更多

 

題目列表(包括答案和解析)

(本小題為必做題,滿分12分)

甲、乙、丙三個同學一起參加某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該高校的預錄取生(可在高考中加分錄取),兩次考試過程相互獨立.根據甲、乙、丙三個同學的平時成績分析,甲、乙、丙三個同學能通過筆試的概率分別是0.6,0.5,0.4,能通過面試的概率分別是0.5,0.6,0.75.

(1)求甲、乙、丙三個同學中恰有一人通過筆試的概率;

(2)設經過兩次考試后,能被該高校預錄取的人數為,求隨機變量的期望

查看答案和解析>>

(本小題為必做題,滿分12分)

已知直線被拋物線截得的弦長為20,為坐標原點.

(1)求實數的值;

(2)問點位于拋物線弧上何處時,△面積最大?

查看答案和解析>>

(本小題滿分12分)

在一次數學考試中,第21題和第22題為選做題. 規定每位考生必須且只須在其中選做一題. 設4名考生選做每一道題的概率均為.

(1)求其中甲、乙兩名學生選做同一道題的概率;

(2)設這4名考生中選做第22題的學生個數為,求的概率分布及數學期望. 的解析

 

查看答案和解析>>

(本小題滿分12分)

在一次數學考試中,第21題和第22題為選做題. 規定每位考生必須且只須在其中選做一題. 設4名考生選做這兩題的可能性均為.

(1)求其中甲、乙二名學生選做同一道題的概率;

(2)設這4名考生中選做第22題的學生個數為,求的概率分布及數學期望.

 

查看答案和解析>>

(本小題滿分12分)
在一次數學考試中,第21題和第22題為選做題. 規定每位考生必須且只須在其中選做一題. 設4名考生選做每一道題的概率均為.
(1)求其中甲、乙兩名學生選做同一道題的概率;
(2)設這4名考生中選做第22題的學生個數為,求的概率分布及數學期望. 的解析

查看答案和解析>>

A.必做題部分

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.  2. 3.共線 4.20 5. 6. 7.  8.2,5,10  9.16.4  10.1  11.7  12.  13.2   14.

二、解答題:

15.解:(1)

   

(2)   

余弦定理可得

又∵

16.證明  (1)∵PA⊥底面ABCD,∴AD是PD在平面ABCD內的射影,

∵CD平面ABCD且CD⊥AD,∴CD⊥PD 

(2)取CD中點G,連EG、FG,

∵E、F分別是AB、PC的中點,∴EG∥AD,FG∥PD

∴平面EFG∥平面PAD,故EF∥平面PAD

(3)解  當平面PCD與平面ABCD成45°角時,直線EF⊥面PCD

證明  G為CD中點,則EG⊥CD,由(1)知FG⊥CD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角  即∠EGF=45°,從而得∠ADP=45°,AD=AP

由Rt△PAE≌Rt△CBE,得PE=CE

又F是PC的中點,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD

17.解:(1)依題意,距離等于到直線的距離,曲線是以原點為頂點,為焦點的拋物線                                                                                   

  曲線方程是                                                                

(2)設圓心,因為圓

故設圓的方程                                       

得:

設圓與軸的兩交點為,則 

在拋物線上,        

所以,當運動時,弦長為定值2                                                   

18.解(1)設日銷售量為

則日利潤

(2)

①當2≤a≤4時,33≤a+31≤35,當35 <x<41時,

∴當x=35時,L(x)取最大值為

②當4<a≤5時,35≤a+31≤36,

易知當x=a+31時,L(x)取最大值為綜合上得

19.解(1)據題意:

可行域如圖(暫缺)

的幾何意義是定點到區域內的點連線的斜率,

的取值范圍為

(2)當有零點時,,滿足條件為

由拋物線的下方與圍成的區域面積

由直線圍成的區域面積

有零點的概率

無零點的概率為

 

 (3)函數.

證明: 符合條件.

因為

同理:;                                  

    所以, 符合條件.              

20.(1)解:由已知:對于,總有 ①成立

   (n ≥ 2)② 

①--②得

均為正數,∴   (n ≥ 2)

∴數列是公差為1的等差數列                又n=1時,, 解得=1

.()  

(2)證明:∵對任意實數和任意正整數n,總有.……6分

 

(3)解:由已知  ,      

         

        易得 

        猜想 n≥2 時,是遞減數列.

∵當

∴在為單調遞減函數.

.

∴n≥2 時, 是遞減數列.即是遞減數列.

, ∴數列中的最大項為

B.附加題部分

三、附加題部分:

21.(必做題)(本小題滿分12分)

解:(1)將代入

        由△可知

        另一方面,弦長AB,解得

(2)當時,直線為,要使得內接△ABC面積最大,

則只須使得

,即位于(4,4)點處.

 

22.(必做題)(本小題滿分12分)

解:(1)分別記甲、乙、丙三個同學筆試合格為事件

表示事件“恰有一人通過筆試”

           則

 

   (2)解法一:因為甲、乙、丙三個同學經過兩次考試后合格的概率均為

所以,故

解法二:分別記甲、乙、丙三個同學經過兩次考試后合格為事件

所以

于是,

 

23.(選做題)(本小題滿分8分)

證明:(1)過D點作DG∥BC,并交AF于G點,

      ∵E是BD的中點,∴BE=DE,

      又∵∠EBF=∠EDG,∠BEF=∠DEG,

      ∴△BEF≌△DEG,則BF=DG,

      ∴BF:FC=DG:FC,

      又∵D是AC的中點,則DG:FC=1:2,

      則BF:FC=1:2;

        (2)若△BEF以BF為底,△BDC以BC為底,

            則由(1)知BF:BC=1:3,

           又由BE:BD=1:2可知=1:2,其中分別為△BEF和△BDC的高,

,則=1:5.

 

 

 

 

 

 

 

 

24.(選做題)(本小題滿分8分)

解:(1)消去參數,得直線的普通方程為;-----------------------2分

兩邊同乘以

消去參數,得⊙的直角坐標方程為:

 

(2)圓心到直線的距離

所以直線和⊙相交.

 

25.(選做題)(本小題滿分8分)

解:MN = =

    即在矩陣MN變換下

即曲線在矩陣MN變換下的函數解析式為

 

 

26.(選做題)(本小題滿分8分)

證明:(1)當時,左邊=時成立 

(2)假設當時成立,即

那么當時,左邊

時也成立                  

根據(1)(2)可得不等式對所有的都成立     

 

 

 

 


同步練習冊答案
主站蜘蛛池模板: 娇妻被3p高潮爽视频 | 国产一区二区三区在线免费 | 91久久国产精品 | 久久国产精品视频观看 | 久久精品在线免费观看 | 日韩中文字幕在线 | 黄色日本视频 | 成人精品 | 九色网址 | 国产成人宗合 | 欧美亚洲一区二区三区 | 欧美午夜视频 | 欧美日韩视频 | 色接久久| 男女羞羞羞视频午夜视频 | 国产特黄大片aaaaa毛片 | 亚洲精品9999 | 久久在线视频 | 日韩久久一区 | 国产精品视频免费 | 中文字幕日本一区 | 久久一区二区视频 | 成人在线一区二区三区 | 欧美激情精品久久久久久变态 | 自拍偷拍视频网站 | www.久久| 99九九久久| 国产精品一区二区吃奶在线观看 | 欧美影院一区 | 一区二区三区精品视频 | 日韩综合一区 | 色一情| 三级免费毛片 | 四虎影视 | 久久99国产精品 | 夜夜久久 | 欧美日韩在线免费观看 | 午夜日韩| 国产性在线 | 欧美一级大片 | 国产视频1 |