題目列表(包括答案和解析)
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設Q為AE的中點,證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
第二問中,作MNAE,垂足為N,連接DN
因為AOEO, DO
EO,EO
平面AOD,所以EO
DM
,因為AODM ,DM
平面AOE
因為MNAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
(2)作MNAE,垂足為N,連接DN
因為AOEO, DO
EO,EO
平面AOD,所以EO
DM
,因為AODM ,DM
平面AOE
因為MNAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
二面角O-AE-D的平面角的余弦值為
已知中,內角
的對邊的邊長分別為
,且
(I)求角的大小;
(II)若求
的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問,
三角函數的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,則當
,即
時,y的最小值為
.
在中,
,分別是角
所對邊的長,
,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵
∴
∴
的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內角 ∴
解:(1) ………………2分
又∵∴
……………………4分
∴的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內角 ∴
……………………12分
另解:由正弦定理得: ∴
又
∴
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com