日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(1)求的值, (2)如果∠A的對邊等于2.求△ABC的面積的最大值. 查看更多

 

題目列表(包括答案和解析)

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

,

…………………………2分

………………4分

取得最大值為,

…………………………6分

(2)設內角A、B、C的對邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當且僅當    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

    <kbd id="y02ig"><pre id="y02ig"></pre></kbd>

                 2分

           點O為DC的中點,DC=2,

           OC=1.

           又

           同理

          

           平面D1AO.      4分

       (II)平面ABCD,

               

           又平面D1DO.

           ,

          

           在平面D1DO內,作

           垂足為H,則平面ADD1A1

           線段OH的長為點O到平面ADD1A1的距離.       6分

           平面ABCD,

           在平面ABCD上的射影為DO.

           為側棱DD1與底面ABCD所成的角,

          

           在

           即點O到平面ADD1A1的距離為    8分

        • <kbd id="y02ig"><pre id="y02ig"></pre></kbd>

                 平面ABCD,

                

                 又平面AOD1

                 又,

                 為二面角C―AD1―O的平面角      10分

                 在

                

                 在

                

                 取D1C的中點E,連結AE,

                 則

                

                

                 在

                 二面角C―AD1―O的大小為      12分

          19.解:(I)

                     3分

             (II)因為

                

                 歸納得

                 則     5分

                

                

                       7分

             (III)當

                       9分

                 則

                

                        13分

          20.解:(I)設

                

                

                        3分

                 代入為P點的軌 跡方程.

                 當時,P點的軌跡是圓.     6分

             (II)由題設知直線的方程為

                 設

                 聯立方程組

                 消去     8分

          * 方程組有兩個不等解,

                

                

                 而

                     10分

                 當

                 當

                 當

                 綜上,      13分

          21.解:(1)

                    1分

                 依題意有

                

                 解得

                      4分

             (2).

                 依題意,是方程的兩個根,

                

                

                

                         6分

                 設

                 由

                 由

                 所以函數在區間上是增函數,在區間[4,6]上是減函數.

                 有極大值為96,

                 上的最大值為96.

                        9分

             (III)的兩根,

                 .

                

                 ∴

          =          11分

                 ∵,

                

                 即

                

                 成立          13分

           

           

          主站蜘蛛池模板: 欧美久久精品 | 欧美在线a| 欧美三级网站 | 国产精品久久久久久亚洲毛片 | 天天操狠狠操 | 天天射夜夜爽 | 久久久精品免费观看 | 久久久精品 | 亚洲免费精品网站 | 欧美一区二区三区免费 | 亚洲一区二区三区四区五区午夜 | 欧美瑟瑟 | 午夜精品一区二区三区在线观看 | 国产精品欧美一区二区 | 久久久久久久久久久久久女国产乱 | 冲田杏梨毛片 | 婷婷久久综合 | 亚洲精品免费视频 | 青青草中文字幕 | 五月激情六月综合 | 欧美在线免费视频 | 日韩欧美国产一区二区三区 | 日本99精品| 中文字幕精品一区二区三区精品 | 羞羞小视频在线观看 | 日韩精品在线一区 | 91精品国产综合久久精品图片 | 国产精品一区二区免费在线观看 | 亚洲一在线 | 久久午夜影视 | 国产区精品 | 亚洲www啪成人一区二区 | 中文字幕日韩在线视频 | 夜夜操天天操 | 中文字幕免费在线观看 | 日韩在线播放一区 | 在线日韩视频 | 91福利电影在线观看 | 亚洲三区在线观看 | 亚洲免费视频网站 | 久久一区|