日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

解:(1)顯然an=n+1,an+an+1>an+2對任意正整數都成立,
即{an}是三角形數列.(2分)
因為k>1,顯然有f(an)<f(an+1)<f(an+2),
由f(an)+f(an+1)>f(an+2)得kn+kn+1>kn+2,解得k<
所以當k∈(1,)時,f(x)=kx是數列{an}的“保三角形函數”.(5分)
(2)由4Sn+1-3Sn=8040得4Sn-3Sn-1=8040,兩式相減得4cn+1-3cn=0
所以,cn=2010
經檢驗,此通項公式滿足4Sn+1-3Sn=8040 (7分)
顯然cn>cn+1>cn+2,因為cn+1+cn+2=2010+2010=•2010>cn
所以{cn}是“三角形”數列.(10分)
(3)[文科]因為g(cn)是單調遞減函數,所以,由lgcn-1+lgcn>lgcn-2
lg2010+(n-2)lg+lg2010+(n-1)lg>lg2010+(n-3)lg(14分)
化簡得lg2010>nlg,解得n<26.4,
即數列{bn}最多有26項.(18分)
(3)[理科]探究過程:函數h(x)=-x2+2x,x∈[1,A]是數列1,1+d,1+2d(d>0)的“保三角形函數”,必須滿足三個條件:
①1,1+d,1+2d(d>0)是三角形數列,所以1+1+d>1+2d,即o<d<1.
②數列中的各項必須在定義域內,即1+2d≤A.
③h(1),h(1+d),h(1+2d)是三角形數列.
由于h(x)=-x2+2x,x∈[1,A]是單調遞減函數,所以h(1+d)+h(1+2d)>h(1),解得0<d<
分析:(1)先有條件得{an}是三角形數列,再利用f(x)=kx,(k>1)是數列{an}的“保三角形函數”,得到kn+kn+1>kn+2,解得k的取值范圍;
(2)先利用條件求出數列{cn}的通項公式,再證明其滿足“三角形”數列的定義即可;
(3)[文科]利用條件得到g(cn)是單調遞減函數以及lgcn-1+lgcn>lgcn-2得,解此不等式找到對應的范圍即可得出結論.
[理科]根據函數h(x)=-x2+2x,x∈[1,A]是數列1,1+d,1+2d(d>0)的“保三角形函數”,可以得到①1,1+d,1+2d(d>0)是三角形數列,所以1+1+d>1+2d,即o<d<1,②數列中的各項必須在定義域內,即1+2d≤A,③h(1),h(1+d),h(1+2d)是三角形數列;結論為在利用h(x)=-x2+2x,x∈[1,A]是單調遞減函數,就可求出對應d的范圍.
點評:本題是在新定義下對數列的綜合考查.關于新定義的題型,在作題過程中一定要理解定義,并會用定義來解題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列{cn}的首項為2013,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項?
(解題中可用以下數據:lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•青浦區二模)[理科]定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N*).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高考數學模擬專題訓練:解答題(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 性色av一区二区三区免费看开蚌 | 久草在线 | 国产成人精品亚洲男人的天堂 | 久草免费在线 | 99视频免费在线观看 | 国产精品亚洲综合 | 日韩性在线 | 欧美日韩成人一区 | 91av在线不卡 | 成人国产精品久久久 | 99国产精品久久久久久久 | 色欧美片视频在线观看 | eeuss影院一区二区三区 | 亚洲成人中文字幕 | 99中文字幕| 日韩欧美三级 | 婷婷丁香社区 | 91人人 | 欧美日韩久久 | 日韩aaaa| 欧美成人在线免费 | 人人精品 | 亚洲一区二区在线 | av一级毛片 | 亚洲毛片| 波多野结衣中文字幕在线视频 | 国产视频一区二区三区四区 | 国产精品美乳一区二区免费 | 欧美2区 | 国产成人精品午夜 | 天天看天天摸天天操 | 亚洲人人舔人人 | 91精品国产综合久久香蕉922 | 欧美午夜一区二区福利视频 | 不卡成人 | 日韩草比 | 亚洲一二三区在线观看 | 99久久婷婷| 免费在线一区二区 | 青青草在线视频免费观看 | 久久久久久亚洲av毛片大全 |