題目列表(包括答案和解析)
1 |
12 |
12 |
![]() |
k=1 |
已知是公差為d的等差數列,
是公比為q的等比數列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數,且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數列
中存在某個連續p項的和式數列中
的一項,請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數
不存在
、
,使等式成立。
(2)中當時,則
即
,其中
是大于等于
的整數
反之當時,其中
是大于等于
的整數,則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)中設當
為偶數時,
式左邊為偶數,右邊為奇數,
當為偶數時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數時,
結合二項式定理得到結論。
解(1)由得
,整理后,可得
、
,
為整數
不存在
、
,使等式成立。
(2)當時,則
即
,其中
是大于等于
的整數反之當
時,其中
是大于等于
的整數,則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)設當
為偶數時,
式左邊為偶數,右邊為奇數,
當為偶數時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數時,
由
,得
當
為奇數時,此時,一定有
和
使上式一定成立。
當
為奇數時,命題都成立
如圖,已知圓錐體的側面積為
,底面半徑
和
互相垂直,且
,
是母線
的中點.
(1)求圓錐體的體積;
(2)異面直線與
所成角的大小(結果用反三角函數表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得
,故
從而體積.2中取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得
,
故從而體積
.
(2)如圖2,取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
已知是等差數列,其前n項和為Sn,
是等比數列,且
,
.
(Ⅰ)求數列與
的通項公式;
(Ⅱ)記,
,證明
(
).
【解析】(1)設等差數列的公差為d,等比數列
的公比為q.
由,得
,
,
.
由條件,得方程組,解得
所以,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數學歸納法)
① 當n=1時,,
,故等式成立.
② 假設當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,
成立.
定義:區間[m,n]、(m,n]、[m,n)、(m,n)(n>m)的區間長度為;若某個不等式的解集由若干個無交集的區間的并表示,則各區間的長度之和稱為解集的總長度。已知
是偶函數,
是奇函數,它們的定義域均為[-3,3],則不等式
解集的總長度的取值范圍是_________。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com