題目列表(包括答案和解析)
平面直角坐標系內的向量都可以用一有序實數對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點這就是《數學
2》中已經得到的斜率公式.上述推導過程比《數學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:(1)
過點(2)
向量(A,B)與直線(3)
設直線那么,
(4)
點
將邊長為1的正三角形
按如圖所示的方式放置,其中頂點
與坐標原點重合.記邊
所在直線的傾斜角為
,已知
.
(Ⅰ)試用表示
的坐標(要求將結果化簡為形如
的形式);
(Ⅱ)定義:對于直角坐標平面內的任意兩點、
,稱
為
、
兩點間的“taxi距離” ,并用符號
表示.試求
的最大值.
將邊長為1的正三角形ABC按如圖所示的方式放置,其中頂點A與坐標原點重合.記邊AB所在直線的傾斜角為,已知
∈[0,
].
(Ⅰ)試用表示
的坐標(要求將結果化簡為形如(cosα,sinα)的形式);
(Ⅱ)定義:對于直角坐標平面內的任意兩點P(x1,y1)、Q(x2,y2),稱|x1-x2|+|y1-y2|為P、Q兩點間的“taxi距離”,并用符號||PQ||表示.試求||BC||的最大值.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com