日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(文)設橢圓的離心率為.右焦點為.方程的 查看更多

 

題目列表(包括答案和解析)

(文)  已知橢圓的離心率為,直線ly=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.(1)求橢圓C1的方程;(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程; (3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

(文) 已知橢圓的離心率為,直線ly=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.(1)求橢圓C1的方程;(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;(3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

(08年銀川一中二模文) 設橢圓的離心率為e=

   (1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.

   (2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1⊥OQ2

查看答案和解析>>

(08年天津卷文)設橢圓,)的右焦點與拋物線的焦點相同,離心率為,則此橢圓的方程為

(A)    (B)  (C)  (D)

查看答案和解析>>

(09年棗莊一模文)設橢圓的右焦點與拋物線

焦點相同,離心率為,則此橢圓的標準方程為        

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調遞減區間是

       ⑶,∴奇函數的圖象左移 即得到的圖象,

故函數的圖象右移后對應的函數成為奇函數.…………………12分

18、(文)解:(1),又. ∴.

(2)至少需要3秒鐘可同時到達點.

到達點的概率. 到達點的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數學期望

(Ⅱ)由

,∴

 

19、解:(1)取中點,連結,∵的中點,的中點.

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內作,,連結,易得,以為原點,軸,軸,軸建立直角坐標系,

,則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點,當是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數,且,,故

為不為0的常數,∴是等比數列.

(2)由,且時,,得

,∴是以1為首項,為公差的等差數列,

,故.

(3)由已知,∴

相減得:,∴,

遞增,∴,均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因為

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因為     

             所以     

             令      

             因為    

                     

             所以     在(-2,0)和(1,+)上是單調遞增的;

                           在(-,-2)和(0,1)上是單調遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令

            時,.  ∴

             ∴ 即.

  (2)∵是R上的奇函數  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個數.

       即的根的個數.

       令.注意,方程根的個數即交點個數.

        對, ,

        令, 得,

         當時,; 當時,.  ∴,

         當時,;   當時,, 但此時

,此時以軸為漸近線。

       ①當時,方程無根;

②當時,方程只有一個根.

③當時,方程有兩個根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數)

故動點的軌跡是以,為焦點,實軸長的雙曲線.方程為

(2)方法一:在中,設,,

假設為等腰直角三角形,則

由②與③得:

由⑤得:,

,

故存在滿足題設條件.

方法二:(1)設為等腰直角三角形,依題設可得:

所以,

.①

,可設

,

.②

由①②得.③

根據雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設條件.

 

 

 

 

(理)解:(1) ,

,

    于是,所求“果圓”方程為

    .                    

(2)由題意,得  ,即

         ,得.  

     又.  .                                             

(3)設“果圓”的方程為,

    記平行弦的斜率為

時,直線與半橢圓的交點是

,與半橢圓的交點是

 的中點滿足  得 .  

     , 

    綜上所述,當時,“果圓”平行弦的中點軌跡總是落在某個橢圓上. 

    當時,以為斜率過的直線與半橢圓的交點是.  

由此,在直線右側,以為斜率的平行弦的中點軌跡在直線上,即不在某一橢圓上.   當時,可類似討論得到平行弦中點軌跡不都在某一橢圓上.

 


同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久久久久久久久久久久久 | 精品一区二区视频 | 国产九九精品视频 | 成人免费视频一区二区 | 欧美精品一区二区三区在线 | 色噜噜精品 | 久久人妖 | 国产激情视频一区 | 日韩一区二区免费视频 | 国产乱精品一区二区三区视频了 | 精品久久久久久久久久久久久久 | 久久精品麻豆 | 亚洲精品永久免费 | 天天操妹子| 成人亚洲区 | av黄色在线播放 | 国产极品美女在线精品图片 | 丝袜久久| 国产精品亚洲一区二区三区在线 | 国产欧美日本 | 精品一区电影 | 韩日一区二区三区 | 免费黄频在线观看 | 91精品国产欧美一区二区 | 观看av| 久国产精品视频 | 欧美精品一区二区久久 | 亚洲免费资源 | 日韩中文一区二区三区 | 国产91导航| 九九久久精品 | 国产精品毛片一区二区在线看 | 国产精品一区二区三区99 | 日韩欧美精品一区二区三区 | 国产特黄大片aaaaa毛片 | 国产一区在线免费 | 国产精品中文 | 久久成人精品视频 | 久久二| 97超碰在线免费 | 日本黄在线 |