題目列表(包括答案和解析)
命題P:cn=0.
命題Q:當x∈[,2]時,函數(shù)f(x)=x+
>
恒成立.
如果P或Q為真命題,P且Q為假命題,求c的取值范圍.
分析:由cn=0得,0<c<1.∴P:0<c<1,
由x∈[,2]時,函數(shù)f(x)=x+
>
恒成立,想到
<f(x)min,故需求f(x)在[
,2]上的最小值.
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數(shù)列中的
成等比數(shù)列
A.18 B
(文) 已知實數(shù)A = +(1≤m≤2).則實數(shù)A的取值范圍是 ( )
A.[0,] B.[1,] C.[,1] D.[0,1]
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com