題目列表(包括答案和解析)
MN |
AC |
BD |
(本題滿分15分)楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第3個數(shù);
(2)若第行中從左到右第13與第14個數(shù)的比為
,求
的值;
(3)寫出第行所有數(shù)的和,寫出
階(包括
階)楊輝三角中的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35,我們發(fā)現(xiàn),事實上,一般地有這樣的結(jié)論:第
斜列中(從右上到左下)前
個數(shù)之和,一定等于第
斜列中第
個數(shù).
試用含有,
的數(shù)學(xué)式子表示上述結(jié)論,并證明.
(本題滿分15分)楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第3個數(shù);
(2)若第行中從左到右第13與第14個數(shù)的比為
,求
的值;
(3)寫出第行所有數(shù)的和,寫出
階(包括
階)楊輝三角中的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35,我們發(fā)現(xiàn),事實上,一般地有這樣的結(jié)論:第
斜列中(從右上到左下)前
個數(shù)之和,一定等于第
斜列中第
個數(shù).
試用含有,
的數(shù)學(xué)式子表示上述結(jié)論,并證明.
楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14個數(shù)與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。
下圖是某市有關(guān)部門根據(jù)對某地干部的月收入情況調(diào)查后畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4000.請根據(jù)該圖提供的信息解答下列問題:(圖中每組包括左端點,不包括右端點,如第一組表示收入在)
(1)求樣本中月收入在的人數(shù);
(2)為了分析干部的收入與年齡、職業(yè)等方面的關(guān)系,必須從樣本的各組中按月收入再用分層抽樣方法抽出人作進一步分析,則月收入在
的這段應(yīng)抽多少人?
(3)試估計樣本數(shù)據(jù)的中位數(shù).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com