題目列表(包括答案和解析)
(本題滿分14分)設(shè)數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn(n∈N*),已知點(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.(1)證明{an}是等差數(shù)列,并求an;(2)設(shè)m、k、p∈N*,m+p=2k,求證:+
≥
;(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由。
(本題滿分14分)
設(shè)數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn(n∈N*),已知點(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.(1)證明{an}是等差數(shù)列,并求an;(2)設(shè)m、k、p∈N*,m+p=2k,求證:+
≥
;(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由。
(本小題滿分14分)已知數(shù)列是各項均不為
的等差數(shù)列,公差為
,
為其前
項和,且滿足
,
.?dāng)?shù)列
滿足
,
為數(shù)列
的前
項和.
(1)求、
和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
(本小題滿分14分)
已知各項均為正數(shù)的數(shù)列{an}前n項和為Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,數(shù)列{bn}滿足bn = 2logpan.
(Ⅰ)若p =,設(shè)數(shù)列
的前n項和為Tn,求證:0 < Tn≤4;
(Ⅱ)是否存在自然數(shù)M,使得當(dāng)n > M時,an > 1恒成立?若存在,求出相應(yīng)的M;若不存在,請說明理由.
(本小題滿分14分)已知數(shù)列是各項均不為
的等差數(shù)列,公差為
,
為其前
項和,且滿足
,
.?dāng)?shù)列
滿足
,
為數(shù)列
的前
項和.
(1)求、
和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com