題目列表(包括答案和解析)
反比例函數y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=
,故ab=k,所以S=|k|(如圖(1)).
這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現舉例如下:
例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大小.
解答:=|k|
=|k|
故=
例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=
|k|=
,
=
|k|=
=
|k|=
S1=S2=S3,故選A.
例3:一個反比例函數在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲線在第三象限
∴k>0∴k=6
∴所以反比例函數的解析式為y=.
根據是述意義,請你解答下題:
如圖(5),過反比例函數y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結OA、OB,設AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關系不能確定
(1)AD是的角平分線,則
=
=
;
(2)AE是的中線,則 = =
;
(3)AF是的高,則
=
=
。
|
如圖1,已知P為正方形ABCD的對角線AC上一點(不與A、C重合),PE⊥BC于點E,PF⊥CD于點F.
(1) 求證:BP=DP;
(2) 如圖2,若四邊形PECF繞點C按逆時針方向旋轉,在旋轉過程中是否總有BP=DP?若是,請給予證明;若不是,請用反例加以說明;
(3) 試選取正方形ABCD的兩個頂點,分別與四邊形PECF的兩個頂點連結,使得到的兩條線段在四邊形PECF繞點C按逆時針方向旋轉的過程中長度始終相等,并證明你的結論 .
圖1 圖2
閱讀下列材料:
我們知道|x|的幾何意義是在數軸上數x對應的點與原點的距離;即,也就是說,|x|表示在數軸上數x與數0對應點之間的距離;
這個結論可以推廣為表示在數軸上
,
對應點之間的距離;
例1 解方程,容易看出,在數軸下與原點距離為2點的對應數為±2,即該方程的解為x=±2
例2 解不等式▏x-1▏>2,如圖,在數軸上找出▏x-1▏=2的解,即到1的距離為2的點對應的數為-1、3,則▏x-1▏>2的解為x<-1或x>3
例3 解方程。由絕對值的幾何意義知,該方程表示求在數軸上與1
和-2的距離之和為5的點對應的x的值。在數軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊,若x對應點在1的右邊,由圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3
參考閱讀材料,解答下列問題:
(1)方程的解為
(2)解不等式≥9;
(3)若≤a對任意的x都成立,求a的取值范圍.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com