閱讀下面一段文字:已知數列{an}的首項a1=1,如果當n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數列{an}的首項a1=1,如果當n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結合以上思想方法,完成下題:
已知函數f(x)=x3+1,數列{an}滿足a1=1,an+1=f(an),若數列{an}的前n項的和為Sn,求證:Sn≥2n-1.