閱讀下面一段文字:已知數列{an}的首項a1=1,如果當n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數列{an}的首項a1=1,如果當n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結合以上思想方法,完成下題:
已知函數f(x)=x3+1,數列{an}滿足a1=1,an+1=f(an),若數列{an}的前n項的和為Sn,求證:Sn≥2n-1.
分析:本題考查的知識點是類比推理,由命題中的“等號”性質,類比推理出”“大于號”的性質.由a
1=1,a
n+1=a
n3+1,a
n≥1.得出:a
n+1=a
n3+1≥a
n2+1≥2a
n,從而
≥2,
an=••…•••a1≥2n-1得到a
n≥2
n-1,最后利用等比數列的求和公式即可證得結論.
解答:解:∵a
1=1,a
n+1=a
n3+1,a
n≥1.…4′
∴有:a
n+1=a
n3+1≥a
n2+1≥2a
n,
∴
≥2.…8′
∴
an=••…•••a1≥2n-1,
即a
n≥2
n-1.…11′
故
Sn=a1+a2+…+an≥1+2+22+…+2n-1==2n-1.
∴S
n≥2
n-1成立.…14′
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).