日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

6.如圖.小紅同學要用紙板制作一個高4cm.底面周長是cm的圓錐形漏斗模型.若不計接縫和損耗.則她所需紙板的面積是 查看更多

 

題目列表(包括答案和解析)

5、如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是(  )

查看答案和解析>>

如圖,小紅同學要用紙板制作一個高為4 cm,底面周長為6π cm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是    (    )

   A.12π cm2         B.15π cm2       C.18π cm2        D.24π cm2

 

查看答案和解析>>

如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是( )

A.12πcm2
B.15πcm2
C.18πcm2
D.24πcm2

查看答案和解析>>

如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是( )

A.12πcm2
B.15πcm2
C.18πcm2
D.24πcm2

查看答案和解析>>

如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是( )

A.12πcm2
B.15πcm2
C.18πcm2
D.24πcm2

查看答案和解析>>

一.1.C;  2.C; 3.C;  4.B;  5.D;  6.B;  7.A; 8.B;  9.A;  10.C。

二.11.x≥2;   12.1;   13.25°; 。保矗保矗;  15.16;  

16.180;  。保罚,③;  。保福

三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分

???????????????????????????????????????????????????????????????????????????????????????????? 5分

時,原式.??????????????????????????????????????????????????????? 7分.

20.解:(1)(名),

本次調查了90名學生.?????????????????????????????????????????????????????????????????????????????????????? (2分)

補全的條形統計圖如下:

  • 文本框: 知道文本框: 記不清文本框: 不知道(名),

    估計這所學校有1500名學生知道母親的生日.??????????????????????????????????????????????????? (6分)

    (3)略(語言表述積極進取,健康向上即可得分).?????????????????????????????????????????????? (7分)

    21.(本題滿分8分)

    解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°.

    ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°.

    ∵  AE∥BF∥CD,

    ∴  ∠FBC=∠EAC=60°.

    ∴ ∠DBC=30°. ???????????????????????????????????????? 2分

    又∵ ∠DBC=∠DAB+∠ADB,

      ∴ ∠ADB=15°.

    ∴ ∠DAB=∠ADB. ∴  BD=AB=2.

      即B,D之間的距離為2km.???????????????????????????????????????????????????????????????????????????????? 4分

    (2)過B作BO⊥DC,交其延長線于點O,

      在Rt△DBO中,BD=2,∠DBO=60°.

      ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分

      在Rt△CBO中,∠CBO=30°,CO=BOtan30°=

      ∴ CD=DO-CO=(km).

      即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分

     

    22.解:(1)

    (2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分)

    (3)在5月17日,甲廠生產帳篷50頂,乙廠生產帳篷30頂.???????????????????????????????????? 6分

    設乙廠每天生產帳篷的數量提高了,則?????????????????????????????????????? 7分

    答:乙廠每天生產帳篷的數量提高了.?????????????????????????????????????????????????????????????????? 8分

     

     

    23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分

    (2)用含的代數式表示重疊三角形的面積為;?????????????????????????? 7分

    的取值范圍為..................................................8分

    (3)能;t=2。.............................................................10分.

    24.本小題滿分10分.

    (Ⅰ)證明  將△沿直線對折,得△,連

    則△≌△.    ????????????????????????????????????????????????????????????????????????????????????????? 1分

    ,,,

    又由,得 .  ????????????????????????????????????????? 2分

    ,

    ,

    . ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

    ,

    ∴△≌△.    ???????????????????????????????????????????????????????????????????????????????????????????? 4分

    ,

    .???????????????????????????????????????????????????????????? 5分

    ∴在Rt△中,由勾股定理,

    .即. ??????????????????????????????????????????????????????? 6分

    (Ⅱ)關系式仍然成立.  ???????????????????????????????????????????????????????????? 7分

    證明  將△沿直線對折,得△,連,

    則△≌△. ???????????????????????????????????????????????????? 8分

    ,,

    ,

    又由,得

    .   ??????????????????????????????????????????????????????????????????????????????????????????????? 8分

    ∴△≌△

    ,,,

    .  

    ∴在Rt△中,由勾股定理,

    .即.????????????????????????????????????????????????????????? 9分

    (3).能;在直線AB上取點M,N使∠MCN=45°......................10分

    25.(本題滿分12分)

    解:(1)設正方形的邊長為cm,則

    .?????????????????????????????????????????????????????????????????????????????????????????????? 1分

    解得(不合題意,舍去),

    剪去的正方形的邊長為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分

    (注:通過觀察、驗證直接寫出正確結果給3分)

    (2)有側面積最大的情況.

    設正方形的邊長為cm,盒子的側面積為cm2,

    的函數關系式為:

    .????????????????????????????????????????????????????????????????????????????????????????????????????? 5分

    改寫為

    時,

    即當剪去的正方形的邊長為2.25cm時,長方體盒子的側面積最大為40.5cm2.?????????????? 7分

    (3)有側面積最大的情況.

    設正方形的邊長為cm,盒子的側面積為cm2

    若按圖1所示的方法剪折,則的函數關系式為:

    時,.??????????????????????????????????? 9分

    若按圖2所示的方法剪折,則的函數關系式為:

    時,.??????????????????????????????????????????????????????????????????????????????????????? 11分

    比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側面積最大,即當剪去的正方形的邊長為cm時,折成的有蓋長方體盒子的側面積最大,最大面積為cm2

    說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應給出相應分數.

    26.(本小題滿分12分)

    解:(1)在Rt△ABC中,,

    由題意知:AP = 5-t,AQ = 2t,

    若PQ∥BC,則△APQ ∽△ABC,

    ,

    ,

    .                                 ??????????????????????????????????????????????????????? 3′

    (2)過點P作PH⊥AC于H.

    ∵△APH ∽△ABC,

    ,

    ,

    .       ??????????????????????????????????????????? 6′

    (3)若PQ把△ABC周長平分,

    則AP+AQ=BP+BC+CQ.

    ,   

    解得:

    若PQ把△ABC面積平分,

    ,  即-+3t=3.

    ∵ t=1代入上面方程不成立,

    ∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.???????????????? 9′

    (4)過點P作PM⊥AC于M,PN⊥BC于N,

    若四邊形PQP ′ C是菱形,那么PQ=PC.

    ∵PM⊥AC于M,

    ∴QM=CM.

    ∵PN⊥BC于N,易知△PBN∽△ABC.

    ,  ∴

    ,

    ,

    解得:

    ∴當時,四邊形PQP ′ C 是菱形.     

    此時, ,

    在Rt△PMC中,

    ∴菱形PQP ′ C邊長為.?????????????????????????????????????????????????????????????????????????? 12′

     

     

     

     

    主站蜘蛛池模板: 亚洲永久免费视频 | 日韩精品播放 | 奇米影视首页 | 91精品久久久久久久久久久久久久久 | 国产黄色免费视频 | 夜夜骑日日射 | 亚洲区在线 | 久久久久久中文字幕 | 天天艹视频| 三级网站在线 | 日日摸夜夜添夜夜添亚洲女人 | 亚洲一区二区黄 | 国产激情在线 | 国产亚洲一区二区三区在线观看 | 久久综合狠狠综合久久综合88 | 亚洲精品免费观看 | 一本一本久久a久久精品牛牛影视 | 国产婷婷久久 | 色网站在线观看 | 亚洲免费在线观看 | 日韩成人精品 | 欧美一区2区 | 亚洲三区视频 | 久久久www成人免费无遮挡大片 | 在线视频三区 | 成人日韩在线观看 | 精品视频在线观看 | 在线观看免费视频日韩 | 狠狠色香婷婷久久亚洲精品 | 电影k8一区二区三区久久 | 九九精品视频在线 | 久久久蜜桃 | 中文字幕乱码一区二区三区 | 亚洲区一 | 伊人免费观看视频 | 91av免费在线| 影院av| 久久精品中文字幕一区 | 国产精品欧美日韩 | 国产一区日韩在线 | 成人在线播放 |
      • <ul id="q0qua"></ul>
      • <strike id="q0qua"><input id="q0qua"></input></strike>
        <strike id="q0qua"></strike>