題目列表(包括答案和解析)
|
設有比例式.
由比例性質可得:
=
,
.
由此可得=-1.
試指出這個推理的錯誤所在.
在棱長為的正方體
中,
是線段
的中點,
.
(1) 求證:^
;
(2) 求證://平面
;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定
為平行四邊形,然后
,可知結論成立。
第三問中,是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據正方體的性質,
因為,
所以,又
,所以
,
,
所以^
.
………………4分
(2)證明:連接,因為
,
所以為平行四邊形,因此
,
由于是線段
的中點,所以
, …………6分
因為面
,
平面
,所以
∥平面
. ……………8分
(3)是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數列,從中選取若干項,不改變它們在原來數列中的先后次序,得到的數列稱為是原來數列的一個子數列. 某同學在學習了這一個概念之后,打算研究首項為
,公差為
的無窮等差數列
的子數列問題,為此,他取了其中第一項
,第三項
和第五項
.
(1) 若成等比數列,求
的值;
(2) 在,
的無窮等差數列
中,是否存在無窮子數列
,使得數列
為等比數列?若存在,請給出數列
的通項公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個命題:“對于首項為正整數,公比為正整數
(
)的無窮等比數 列
,總可以找到一個子數列
,使得
構成等差數列”. 于是,他在數列
中任取三項
,由
與
的大小關系去判斷該命題是否正確. 他將得到什么結論?
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數列,從中選取若干項,不改變它們在原來數列中的先后次序,得到的數列稱為是原來數列的一個子數列. 某同學在學習了這一個概念之后,打算研究首項為
,公差為
的無窮等差數列
的子數列問題,為此,他取了其中第一項
,第三項
和第五項
.
(1) 若成等比數列,求
的值;
(2) 在,
的無窮等差數列
中,是否存在無窮子數列
,使得數列
為等比數列?若存在,請給出數列
的通項公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個命題:“對于首項為正整數,公比為正整數
(
)的無窮等比數 列
,總可以找到一個子數列
,使得
構成等差數列”. 于是,他在數列
中任取三項
,由
與
的大小關系去判斷該命題是否正確. 他將得到什么結論?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com