日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

建立空間直角坐標(biāo)系.設(shè).則... 查看更多

 

題目列表(包括答案和解析)

如圖,四棱柱中,平面,底面是邊長為的正方形,側(cè)棱

 (1)求三棱錐的體積;

 (2)求直線與平面所成角的正弦值;

 (3)若棱上存在一點(diǎn),使得,當(dāng)二面角的大小為時,求實(shí)數(shù)的值.

【解析】(1)在中,

.                 (3’)

(2)以點(diǎn)D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則

       (4’)

,設(shè)平面的法向量為

,                                             (5’)

.  (7’)

(3)

設(shè)平面的法向量為,由,      (10’)

 

查看答案和解析>>

如圖,在三棱柱中,側(cè)面為棱上異于的一點(diǎn),,已知,求:

(Ⅰ)異面直線的距離;

(Ⅱ)二面角的平面角的正切值.

【解析】第一問中,利用建立空間直角坐標(biāo)系

解:(I)以B為原點(diǎn),分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

在三棱柱中有

,

設(shè)

側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

(II)由已知有故二面角的平面角的大小為向量的夾角.

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),

(1)求證:平面

(2)求二面角的大小.

【解析】第一問利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來表示二面角的。

第二問中,以A為原點(diǎn),如圖所示建立直角坐標(biāo)系

,,

設(shè)平面FAE法向量為,則

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:

(Ⅱ)若邊上有且只有一個點(diǎn),使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>


同步練習(xí)冊答案
主站蜘蛛池模板: 男人的天堂视频网站 | 亚洲中国字幕 | 久久久久久免费毛片精品 | 97久久精品人人澡人人爽 | 九九热这里 | 亚洲一区二区伦理 | xxxx性欧美 | 国产精品久久久久婷婷二区次 | 国产精品一区二区免费在线观看 | 亚洲免费视频网址 | 一区二区三区精品视频 | 国产美女在线免费 | 国产精品视频一区二区三区 | 久久的爱 | 五月激情婷婷六月 | 亚洲精品久久久久久久久 | 最新亚洲黄色网址 | 国产一区国产二区在线观看 | 91麻豆蜜桃一区二区三区 | 国产精品久久国产精麻豆99网站 | 精品久久久久久久久久久久久久久 | 日批视频免费 | 国产精品视频一区二区三区四蜜臂 | 午夜精选视频 | 国产最新精品视频 | 精品欧美日韩 | 亚欧在线观看 | 欧美日韩免费看 | 欧美精品1区 | 91在线看片 | 欧美成人精品在线观看 | 女人口述交换啪啪高潮过程 | 动漫精品一区二区三区 | 91社区影院 | 日韩伦理av| 射久久 | 国产精品久久久久毛片软件 | 蜜桃视频在线观看www社区 | 欧美激情在线观看 | 中文资源在线观看 | 久久综合九色综合欧美狠狠 |