日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

⑴求出橢圓和雙曲線的離心率,(2)設直線PA.PB.QA.QB的斜率分別是 查看更多

 

題目列表(包括答案和解析)

已知焦點在軸上的橢圓和雙曲線的離心率互為倒數,它們在第一象限交點的坐標為,設直線(其中為整數).

(1)試求橢圓和雙曲線的標準方程;

(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

 

查看答案和解析>>

已知焦點在軸上的橢圓和雙曲線的離心率互為倒數,它們在第一象限交點的坐標為,設直線(其中為整數).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

已知焦點在軸上的橢圓和雙曲線的離心率互為倒數,它們在第一象限交點的坐標為,設直線(其中為整數).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

已知橢圓C1的離心率為e,且b,e,為等比數列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設雙曲線C2的頂點和焦點分別是橢圓C1的焦點和頂點,設O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足.請說明理由.若存在,請求出直線AB的方程.

查看答案和解析>>

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e,且b,e,
1
3
為等比數列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設雙曲線C2
x2
m2
-
y2
n2
=1
的頂點和焦點分別是橢圓C1的焦點和頂點,設O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足
OA
=
1
2
OB
.請說明理由.若存在,請求出直線AB的方程.

查看答案和解析>>

 

.1.B  2.B  3.A  4.B   5.A  6.D   7.C   8.A   9.A    10.C

 

二.11.5        12.36         13.       14.        

15. 適合①的不等式如:或其它曲線型只要適合即可

 

三.16.解: (1)

即AB邊的長度為2.                  …………… …………5分

(2)由已知及(1)有:     

                              ……………8分

由正弦定理得:                  ……………10分

=   …………12分

 

17.解:  ①依題意可設                           ………1分

對n=1,2,3,……都成立                                      ………3分

∴ 又解得

 

                  ………6分

 

②∵        …………9分

+ ++…+

                 ……12分

 

18.解:(Ⅰ)依題意,記“甲投一次命中”為事件A,“乙投一次命中”為事件B,

   則              …………3分

    ∵“甲、乙兩人各投球一次,都沒有命中”的事件為

                     …………5分

(Ⅱ)∵甲、乙兩人在罰球線各投球二次時,

甲命中1次,乙命中0次的概率為  …………7分

甲命中2次,乙命中0次的概率為…………9分

甲命中2次,乙命中1次”的概率為…………11分

故甲、乙兩人在罰球線各投球兩次,甲投球命中的次數比乙投球命中的次數多的

概率為P=                                 …………12分

 

19.解法1:取BE的中點O,連OC.

∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.   

以O為原點建立空間直角坐標系O-xyz如圖,

則由已知條件有:,,

, ……4分

設平面ADE的法向量為=

則由n?

n?

可取                    ……6分 

又AB⊥平面BCE. ∴AB⊥OC.OC⊥平面ABE

∴平面ABE的法向量可取為m.

n?m?=0,

m∴平面ADE⊥平面ABE.                        ……8分

⑵點C到平面ADE的距離為……12分

解法2:取BE的中點O,AE的中點F,連OC,OF,CD.則

∵AB⊥平面BCE,CD⊥平面BCE, AB=2CD

∴CD CD∴∥ FD  ……3分

∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.

∴OC⊥平面ABE. ∴FD⊥平面ABE.

從而平面ADE.⊥平面ABE.     ……6分

②∵CD ,延長AD, BC交于T

則C為BT的中點.

點C到平面ADE的距離等于點B到平面ADE的距離的.……8分

過B作BH⊥AE,垂足為H。∵平面ADE.⊥平面ABE。∴BH⊥平面BDE.

由已知有AB⊥BE. BE=,AB= 2, ∴BH=

從而點C到平面ADE的距離為    ……………… ……………12分

∥ FD, 點C到平面ADE的距離等于點O到平面ADE的距離為.

或取A B的中點M。易證∥ DA。點C到平面ADE的距離等于點M到平面ADE的距離為.

 

20. 解: (I)設O為原點,則=2=2

=,得=

于是O、P、Q三點共線。                           ……………2分

因為所以PF∥QF/,且 ,……………3分

                          ……………5分

因此橢圓的離心率為雙曲線的離心率為       ……………7分

 

(II)設

點P在雙曲線的上,有

.

所以。    ①…………9分

又由點Q在橢圓上,有

同理可得       ②                  ……………10分

∵O、P、Q三點共線。∴

由①、②得。                 ……………13分

21. 解:(I)                    ……………1分

由已知有:,∴  ……………3分

從而

=0得:x1=1,x2. ∵ ∴x2

當x變化時,、f(x)的變化情況如下表:

 

增函數

減函數

增函數

 

從上表可知:,上是增函數;

,上是減函數   ……………6分

 

(II)∵m>0,∴m+1>1.  由(I)知:

 

①當0<m<1時,. 則最小值為得:   ……8分

此時.從而

∴最大值為

此時適合.       ……10分

 

②當m1時, 在閉區間上是增函數.

∴最小值為                  ⑴

最大值為=0.    ⑵………12分

由⑵得:    ⑶

⑶代入⑴得:.即

又m1, 從而

∴此時的a,m不存在

綜上知: ,.                               ………14分                         

 

 

 

 


同步練習冊答案
主站蜘蛛池模板: 一区福利视频 | 亚洲精品中文字幕中文字幕 | 久久久久国产一区二区三区 | 免费黄色在线 | 成人一级片在线观看 | 99视频网站| 午夜精品福利一区二区三区蜜桃 | 国产精品国产a级 | 免费黄色在线网址 | 欧美日韩精品在线观看 | 亚洲日韩欧美一区二区在线 | 99成人| 日韩美香港a一级毛片免费 欧美一极视频 | 免费在线色 | 欧美精品二区 | 国产精品爱久久久久久久 | 在线看一区二区 | 精品国产一区二区三区在线观看 | 亚洲成人日本 | 日韩免费视频一区二区 | 免费在线观看一级毛片 | 国产伦在线 | 亚洲九九 | 亚洲国产视频一区 | 久久av一区二区 | 在线看免费观看日本 | 精品国产乱码简爱久久久久久 | 羞羞视频网站在线免费观看 | 日韩一级片在线观看 | 国产精品自拍av | 精品久久一区二区 | 精品亚洲永久免费精品 | 天天碰天天操 | 国产精品成人在线观看 | 亚洲国产精品va在线看黑人 | 息与子猛烈交尾一区二区 | 91九色国产视频 | 日韩二区三区 | 国产精品久久久久久吹潮 | 日本亚洲精品 | 玖玖精品视频 |