題目列表(包括答案和解析)
如圖,已知圓錐體的側面積為
,底面半徑
和
互相垂直,且
,
是母線
的中點.
(1)求圓錐體的體積;
(2)異面直線與
所成角的大小(結果用反三角函數表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得
,故
從而體積.2中取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得
,
故從而體積
.
(2)如圖2,取OB中點H,聯結PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(O為坐標原點),當
<
時,求實數
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
已知數列滿足
,
(1)求證:數列是等比數列;
(2)求數列的通項和前n項和
.
【解析】第一問中,利用,得到
從而得證
第二問中,利用∴ ∴
分組求和法得到結論。
解:(1)由題得 ………4分
……………………5分
∴數列是以2為公比,2為首項的等比數列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到
,再利用
可以結合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知函數,
(1)求函數的定義域;
(2)求函數在區間
上的最小值;
(3)已知,命題p:關于x的不等式
對函數
的定義域上的任意
恒成立;命題q:指數函數
是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,
得:
,
第三問中,由在函數的定義域上
的任意
,
,當且僅當
時等號成立。當命題p為真時,
;而命題q為真時:指數函數
.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),
得:
,
(3)由在函數的定義域上
的任意
,
,當且僅當
時等號成立。當命題p為真時,
;而命題q為真時:指數函數
.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,
當命題p為假,命題q為真時,,
所以
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com