日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

解:(1)取中點.連結..則. 查看更多

 

題目列表(包括答案和解析)

探究問題

(1)閱讀理解:

①如圖1,在△ABC所在平面上存在一點P,使它到三角形三頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PAPBPC的值為△ABC的費馬距離.

②如圖2,若四邊形ABCD的四個頂點在同一個圓上,則有AB·CDBC·ADAC·BD.此為托勒密定理.

(2)知識遷移:

①請你利用托勒密定理,解決如下問題:

如圖3,已知點P為等邊△ABC外接圓的弧BC上任意一點.求證:PBPCPA

②根據(2)①的結論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120º)的費馬點和費馬距離的方法:

第一步:如圖4,在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;

第二步:在弧BC上取一點P0,連接P0AP0BP0CP0D

易知P0AP0BP0CP0A+(P0BP0C)=P0A   

第三步:請你根據(1)①中定義,在圖4中找出△ABC的費馬點P,線段   的長度即為△ABC的費馬距離.

(3)知識應用:

2010年4月,我國西南地區出現了罕見的持續干旱現象,許多村莊出現了人、畜飲水困難.為解決老百姓飲水問題,解放軍某部到云南某地打井取水.

已知三村莊ABC構成了如圖5所示的△ABC(其中∠A、∠B、∠C均小于120º),現選取一點P打水井,使水井P到三村莊ABC所鋪設的輸水管總長度最小.求輸水管總長度的最小值.

查看答案和解析>>

22、閱讀理解:
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現“中點”“中線”字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發,請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數量關系,并加以證明.

查看答案和解析>>

閱讀理解:
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現“中點”“中線”字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發,請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數量關系,并加以證明.

查看答案和解析>>

閱讀理解:
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現“中點”“中線”字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發,請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數量關系,并加以證明.

查看答案和解析>>

閱讀理解:
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現“中點”“中線”字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發,請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數量關系,并加以證明.

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 黄色网址免费在线观看 | 免费av一区| 色片在线免费观看 | 中文字幕一区二区三区不卡 | 久草精品在线观看 | 一区二区精品视频 | 日韩在线视频网站 | 特级毛片在线 | 真人一级毛片 | 最新日韩av网址 | 亚洲 精品 综合 精品 自拍 | 99免费精品 | 九色网址 | 超碰97在线免费 | 国产亚洲精品久久久久动 | 午夜影视在线观看 | 97超碰免费在线 | 狠狠久久伊人中文字幕 | 亚洲成人一二三 | 蜜桃av噜噜一区二区三区 | 国产成人精品久久 | 久久e久久 | 九九久久久 | 欧美日韩不卡合集视频 | 国产日韩欧美亚洲 | a性片| 国产91在线免费观看 | 黄色网址在线免费观看 | 成人黄色免费 | 欧美日韩精品一区 | 中文幕av一区二区三区佐山爱 | 欧美激情国产日韩精品一区18 | 国产精品一码二码三码在线 | 精品中文字幕一区 | 久久久性色精品国产免费观看 | 久久精品国产亚 | 日本一区二区在线视频 | 日韩av在线免费播放 | 免费成人av在线 | 黄色网址av | 日本成人一区二区三区 |