日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

由TCD.CD平面PCD得T平面PCD. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設平面PCD的法向量

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求證:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD內 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二問中解:取PD的中點E,連接CE、BE,

為正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內的射影,

∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進而求解。

 

查看答案和解析>>

(本小題滿分14分)

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD中,AB⊥AD,AB+AD=4,CD=

(I)求證:平面PAB⊥平面PAD;

(II)設AB=AP.

       (i)若直線PB與平面PCD所成的角為,求線段AB的長;

       (ii)在線段AD上是否存在一個點G,使得點G到點P,B,C,D的距離都相等?說明理

由。

查看答案和解析>>

已知四棱錐的底面為直角梯形,底面,且的中點。

(1)證明:面

(2)求所成的角;

(3)求面與面所成二面角的余弦值.

【解析】(1)利用面面垂直的性質,證明CD⊥平面PAD.

(2)建立空間直角坐標系,寫出向量的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

 

查看答案和解析>>

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分別為PA、BC的中點,且PD=
2
,CD=1
(1)求證:MN∥平面PCD;
(2)求證:平面PAC⊥平面PBD;
(3)求三棱錐P-ABC的體積.

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 国产精品日韩欧美一区二区三区 | 奇米影| 99精品久久 | 日韩精品一二区 | 国产一区二区精彩视频 | 日韩av片免费看 | 日本成人小视频 | 好看的一级毛片 | 在线免费国产 | 国产精品久久一区二区三区 | 黄色免费在线观看网址 | 久久久久久影院 | 看真人视频a级毛片 | 日韩高清一区 | 亚洲欧洲无码一区二区三区 | 逼操 | 久久婷婷网 | 欧美视频免费看 | 国产国拍亚洲精品av | 欧美日韩亚洲一区二区 | 一级毛片电影 | 欧美一区二区三区在线播放 | 精品视频一区二区三区 | 久久91视频| 成年人黄色免费视频 | 精品国产乱码久久久久久88av | 99精彩视频 | 精品久久在线 | 日本欧美在线观看 | 国产高清久久久 | 国产在线h| 在线一二区| 骚鸭av | 欧美日韩在线观看中文字幕 | 国产精品久久久久久久久久久久冷 | 国产成人免费视频 | av国产精品| 欧美精品成人 | 操网| 色爱区综合五月激情 | av在线一区二区 |