題目列表(包括答案和解析)
定義:若數列滿足
,則稱數列
為“平方遞推數列”。已知數列
中,
,點
在函數
的圖像上,其中
為正整數。
(1)證明:數列是“平方遞推數列”,且數列
為等比數列。
(2)設(1)中“平方遞推數列”的前項之積為
,即
,求數列
的通項及
關于
的表達式。
(3)記,求數列
的前
項之和
,并求使
的
的最小值。
定義:若數列滿足
,則稱數列
為“平方數列”。已知數列
中,
,點
在函數
的圖像上,其中
為正整數。
⑴證明:數列是“平方數列”,且
數列
為等比數列。
⑵設⑴中“平方數列”的前
項之積為
,即
,求數列
的通項及
關于
的表達式。
⑶記,求數列
的前
項之和
,并求使
的
的最小值。
設橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯立方程組,結合
得到結論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com