題目列表(包括答案和解析)
解::因?yàn)?img width=364 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/151/231751.gif">,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點(diǎn),又因?yàn)閥=與y=-
在(0,+
)上都是增函數(shù),因此
在(0,+
)上是增函數(shù),所以零點(diǎn)個(gè)數(shù)只有一個(gè)方法2:把函數(shù)
的零點(diǎn)個(gè)數(shù)個(gè)數(shù)問題轉(zhuǎn)化為判斷方程
解的個(gè)數(shù)問題,近而轉(zhuǎn)化成判斷
與
交點(diǎn)個(gè)數(shù)問題,在坐標(biāo)系中畫出圖形
由圖看出顯然一個(gè)交點(diǎn),因此函數(shù)的零點(diǎn)個(gè)數(shù)只有一個(gè)
袋中有50個(gè)大小相同的號(hào)牌,其中標(biāo)著0號(hào)的有5個(gè),標(biāo)著n號(hào)的有n個(gè)(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號(hào)碼的分布列,以及取得號(hào)碼為偶數(shù)的概率.
15.解:根據(jù)條件去畫滿足條件的二次函數(shù)圖象就可判斷出
某大型超市為促銷商品,特舉辦“購(gòu)物搖獎(jiǎng)100%中獎(jiǎng)”活動(dòng),凡消費(fèi)者在該超市購(gòu)物滿20元,享受一次搖獎(jiǎng)機(jī)會(huì),購(gòu)物滿40元,享受兩次搖獎(jiǎng)機(jī)會(huì),依次類推。搖獎(jiǎng)機(jī)的旋轉(zhuǎn)圓盤是均勻的,扇形區(qū)域A、B、C、D、E所對(duì)應(yīng)的圓心角的比值分別為1:2:3:4:5。相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎(jiǎng),獎(jiǎng)金分別為5元、4元、3元、2元、1元。求某人購(gòu)物30元,獲得獎(jiǎng)金的分布列.
(2)描述法:把集合中的元素 的描述出來,寫在 內(nèi)表示集合的方法.一般形式是{x|p},其中豎線前面的x叫做此集合的代表元素,豎線后面的p指出元素x所具有的公共屬性.描述法便于從整體上把握一個(gè)集合,常適用于集合中元素的公共屬性較為明顯時(shí).
(3)韋恩圖:為了形象地表示集合,有時(shí)常用一些封閉的 表示一個(gè)集合,這樣的圖形稱為韋恩圖,在解題時(shí),利用韋恩圖“數(shù)”和“形”結(jié)合,使得解答十分直觀.?
如集合A={a,b,c}可形象地表示為圖(1)或圖(2).?
(1) (2)
解關(guān)于的不等式
【解析】本試題主要考查了含有參數(shù)的二次不等式的求解,
首先對(duì)于二次項(xiàng)系數(shù)a的情況分為三種情況來討論,
A=0,a>0,a<0,然后結(jié)合二次函數(shù)的根的情況和圖像與x軸的位置關(guān)系,得到不等式的解集。
解:①若a=0,則原不等式變?yōu)?2x+2<0即x>1
此時(shí)原不等式解集為;
②若a>0,則ⅰ)時(shí),原不等式的解集為
;
ⅱ)時(shí),原不等式的解集為
;
ⅲ)時(shí),原不等式的解集為
。
③若a<0,則原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911034560884068/SYS201207091104230776185555_ST.files/image013.png">
原不等式的解集為
。
解析 第二列等式的右端分別是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第n項(xiàng)an與第n-1項(xiàng)an-1(n≥2)的差為:an-an-1=n,∴a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n,各式相加得,
an=a1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an=,∴a
=
n2(n+1)2.
答案 n2(n+1)2
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com