題目列表(包括答案和解析)
如圖已知橢圓的中心在原點,焦點在x軸上,長軸是短軸的2倍且經過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),且交橢圓于A、B兩點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證:直線MA、MB與x軸圍成一個等腰三角形.說明理由.
已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)設直線MA、MB的斜率分別為k1、k2,求證k1+k2=0.
已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)設直線MA、MB的斜率分別為k1、k2,求證k1+k2=0.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com