題目列表(包括答案和解析)
已知△的內角
所對的邊分別為
且
.
(1)
若, 求
的值;
(2)
若△的面積
求
的值.
【解析】本小題主要考查正弦定理、余弦定理、同角三角函數的基本關系等基礎知識,考查運算求解能力。第一問中,得到正弦值
,再結合正弦定理可知,
,得到
(2)中
即
所以c=5,再利用余弦定理
,得到b的值。
解: (1)∵, 且
, ∴
. 由正弦定理得
, ∴
.
(2)∵ ∴
. ∴c=5
由余弦定理得,
∴
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=
(Ⅰ)求角B的大小;
(Ⅱ)設=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理
=2acosB,所以cosB=
,B=
第二問中,m=(sin(C+),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+-
=-
+2ksinA+
=-
+
(k>1).
而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-
=3,得k=
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com