題目列表(包括答案和解析)
已知函數,其中
.
(1)若在
處取得極值,求曲線
在點
處的切線方程;
(2)討論函數在
的單調性;
(3)若函數在
上的最小值為2,求
的取值范圍.
【解析】第一問,因
在
處取得極值
所以,,解得
,此時
,可得求曲線
在點
處的切線方程為:
第二問中,易得的分母大于零,
①當時,
,函數
在
上單調遞增;
②當時,由
可得
,由
解得
第三問,當時由(2)可知,
在
上處取得最小值
,
當時由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數在
上的最小值為2時,求
的取值范圍是
已知函數,(
),
(1)若曲線與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數
的單調區間,并求其在區間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線
在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當
時,
令
,得
時,
的情況如下:
x |
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
所以函數的單調遞增區間為
,
,單調遞減區間為
當,即
時,函數
在區間
上單調遞增,
在區間
上的最大值為
,
當且
,即
時,函數
在區間
內單調遞增,在區間
上單調遞減,
在區間
上的最大值為
當,即a>6時,函數
在區間
內單調遞贈,在區間
內單調遞減,在區間
上單調遞增。又因為
所以在區間
上的最大值為
。
已知函數
(Ⅰ)求函數的最小正周期;
(Ⅱ)求函數在區間
上的最大值和最小值.
【解析】(1)
所以,
的最小正周期
(2)因為在區間
上是增函數,在區間
上是減函數,
又,
,
,
故函數在區間
上的最大值為
,最小值為-1.
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
設函數,其中
為自然對數的底數.
(1)求函數的單調區間;
(2)記曲線在點
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問利用由已知,所以
,
由,得
,
所以,在區間
上,
,函數
在區間
上單調遞減;
在區間
上,
,函數
在區間
上單調遞增;
第二問中,因為,所以曲線
在點
處切線為
:
.
切線與
軸的交點為
,與
軸的交點為
,
因為,所以
,
, 在區間
上,函數
單調遞增,在區間
上,函數
單調遞減.所以,當
時,
有最大值,此時
,
解:(Ⅰ)由已知,所以
,
由
,得
, 所以,在區間
上,
,函數
在區間
上單調遞減;
在區間上,
,函數
在區間
上單調遞增;
即函數的單調遞減區間為
,單調遞增區間為
.
(Ⅱ)因為,所以曲線
在點
處切線為
:
.
切線與
軸的交點為
,與
軸的交點為
,
因為,所以
,
, 在區間
上,函數
單調遞增,在區間
上,函數
單調遞減.所以,當
時,
有最大值,此時
,
所以,的最大值為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com