日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(2)證明:曲線上任意一點處的切線與直線和直線所圍成的三角形面積為定值.并求此定值. 查看更多

 

題目列表(包括答案和解析)

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知

(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得.請結合(I)中的結論證明:x1<x3<x2

查看答案和解析>>

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知

(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

(Ⅱ)設P(x1,f(x1),Q(x2,f(x2))是函數f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得.請結合(Ⅰ)中的結論證明:x1<x3<x2

查看答案和解析>>

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數 f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結合(I)中的結論證明x1<x3<x2

查看答案和解析>>

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足f(x)≤g(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=lnx,g(x)=1-
1
x

(1)試探求f(x)與g(x)是否存在“左同旁切線”,若存在,請求出左同旁切線方程;若不存在,請說明理由.
(2)設P(x1,f(x1)),Q(x2,f(x2))是函數f(x)圖象上任意兩點,0<x1<x2,且存在實數x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,證明:x1<x3<x2

查看答案和解析>>

定義:已知函數f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設P(是函數 f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得.請結合(I)中的結論證明:

 

查看答案和解析>>

1.C       2.C       3.B       4.A      5.C       6.C       7.D      8.C       9.D      10.B 學科網(Zxxk.Com)

1l.B      12.A學科網(Zxxk.Com)

2.解析:學科網(Zxxk.Com)

       ,∴選C.學科網(Zxxk.Com)

3.解析:是增函數  學科網(Zxxk.Com)

       故,即學科網(Zxxk.Com)

       又學科網(Zxxk.Com)

       ,故選B.學科網(Zxxk.Com)

4.解析:如圖作出可行域,作直線,平移直線位置,使其經過點.此時目標函數取得最大值(注意反號)學科網(Zxxk.Com)

學科網(Zxxk.Com)

學科網(Zxxk.Com)

       ,故選A學科網(Zxxk.Com)

5.解析:設有人投中為事件,則學科網(Zxxk.Com)

       故選C.

6.解析:展開式中通項;

      

       由,得,故選C.

7.解析:

       由

,故選D.

8.略

9.解析:由得準線方程,雙曲線準線方程為

       ,解得

       ,故選D.

10.解析:設正四面體的棱長為2,取中點為,連接,則所成的角,在

,故選B.

11.解析:

由題意,則,故選B.

12.解析:由已知

       為球的直么

       ,又

       設,則

      

      

       又由,解得

       ,故選A.

另法:將四面體置于正方休中.

       正方體的對角線長為球的直徑,由此得,然后可得

二、填空題

13.3;解析:上的投影是

14.(0.2);解析:由,解得

15.

解析:

      

       由余弦定理為鈍角

       ,即

       解得

16.②③;

解析:容易知命題①是錯的,命題②、③都是對的,對于命題④我們考查如圖所示的正方體,政棱長為,顯然為平面內兩條距離為的平行直線,它們在底面內的射影仍為兩條距離為的平行直線.但兩平面卻是相交的.

三、

17.解:(1)

             

,故

       (2)

              由

邊上的高為。則

18.(1)設甲、乙兩人同時參加災區服務為事件,則

(2)記甲、乙兩人同時參加同一災區服務為事件,那么

19.解:

      

(1)平面

           ∵二面角為直二面角,且

              平面              平面

(2)(法一)連接交于點,連接是邊長為2的正方形,                 

平面,由三垂線定理逆定理得

是二面角的平面角

由(1)平面

中,

∴在中,

故二面角等于

(2)(法二)利用向量法,如圖以之中點為坐標原點建立空間坐標系,則

             

             

             

              設平面的法向量分別為,則由

              ,而平面的一個法向理

             

              故所求二面角等于

20.解:(1)由題設,即

              易知是首項為,公差為2的等差數列,

           ∴通項公式為

    (2)由題設,,得是以公比為的等比數列.

       

        由

 

21.解:(1)由題意,由拋物線定義可求得曲線的方程為

(2)證明:設點的坐標分別為

             若直線有斜率時,其坐標滿足下列方程組:

              ,        

              若沒有斜率時,方程為

              又

             

              ;又

                         

22.(1)解:方程可化為

時,,又,于是,解得,故

       (2)解:設為曲線上任一點,由知曲線在點處的切線方程為,即

              令,得,從而得切線與直線的交點坐標為

,得,從而得切線與直線的交點坐標為.所以點處的切線與直線所圍成的三角形面積為.故曲線上任一點處的切線與直線所圍成的三角形的面積為定值,此定值為6.

 

 

 


同步練習冊答案
主站蜘蛛池模板: 天堂中文av在线 | 欧美 日韩 中文字幕 | 伊人影院久久 | 伊人电院网 | 日韩av一区二区三区四区 | 91麻豆精品| 欧美精品成人一区二区三区四区 | 亚洲国产精品麻豆 | 日本久久网 | 久久伦理电影网 | 国产一区二区三区四区五区 | 五月激情综合网 | 性色网站 | 久久精品国产99国产 | 草逼逼 | 99热精品在线 | 天天av网| 一区二区三区免费在线观看 | 欧美小电影| 青春草在线观看 | 视频一区 国产精品 | 亚洲精品视频免费 | 国产精品成人免费视频 | 日韩精品亚洲专区在线观看 | 午夜精品一区二区三区在线观看 | 国产在线一区二区三区在线观看 | 欧美精品一区二区三区在线播放 | 99久久久久国产精品免费 | 黄色片视频在线观看 | 裸体在线国模精品偷拍 | 亚洲天堂在线视频观看 | 天天干,夜夜操 | 伊人免费视频二 | 国产一区二区三区四区在线观看 | 亚洲视频一区二区三区四区 | 亚洲 精品 综合 精品 自拍 | 亚洲成人av在线 | 国产在线日本 | 中文字幕国产一区 | 亚洲最新中文字幕 | 国产亚洲欧美一区二区三区 |