日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

15.設直線與圓的交點為.當.取最小值 查看更多

 

題目列表(包括答案和解析)

橢圓的兩個焦點為F1(-c,0),F2(c,0),M是橢圓上的一點,且滿足
(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓的兩個焦點為F1(-c,0),F2(c,0),M是橢圓上的一點,且滿足
(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓的兩個焦點為F1(-c,0),F2(c,0),M是橢圓上的一點,且滿足
(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓的兩個焦點為F1(-c,0),F2(c,0),M是橢圓上的一點,且滿足
(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

設橢圓的中心和拋物線的頂點均為原點的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在上各取兩個點,將其坐標記錄于下表中:


(1)求的標準方程;
(2)若交于C、D兩點,的左焦點,求的最小值;
(3)點上的兩點,且,求證:為定值;反之,當為此定值時,是否成立?請說明理由.

查看答案和解析>>

1.B       2.C       3.B       4.C       5.B       6.B       7.C      8.B       9.C       10.B  學科網(Zxxk.Com)

11.C     12.D學科網(Zxxk.Com)

【解析】學科網(Zxxk.Com)

3.當時,函數上,恒成立即上恒成立,可得學科網(Zxxk.Com)

       當時,函數上,恒成立學科網(Zxxk.Com)

上恒成立學科網(Zxxk.Com)

可得,對于任意恒成立學科網(Zxxk.Com)

所以,綜上得學科網(Zxxk.Com)

4.解法一:聯立,得學科網(Zxxk.Com)

方程總有解,需恒成立學科網(Zxxk.Com)

恒成立,得恒成立學科網(Zxxk.Com)

       ;又學科網(Zxxk.Com)

的取值范圍為學科網(Zxxk.Com)

解法二:數形結合,因為直線恒過定點(0,1),要使直線與橢圓總有交點當日僅當點(0,1)在橢圓上或橢圓內,即學科網(Zxxk.Com)

       學科網(Zxxk.Com)

       的取值范圍為學科網(Zxxk.Com)

5.學科網(Zxxk.Com)

7.展開式前三項的系數滿足可解得,或(舍去).從而可知有理項為,故C正確.學科網(Zxxk.Com)

8.,欲使為奇函數,須使,觀察可知,不符合要求,若,則,其在上是減函數,故B正確

時,,其在上是增函數,不符合要求.

9.等價于

      

畫圖可知,故

10.如圖乙所示.設,點到直線的距離為,則由拋物線定義得

又由點在橢圓上,及橢圓第一定義得

由橢圓第二定義得,解之得

11.從52張牌中任意取13張牌的全部取法為;缺少某一種花色的取法為,缺少兩種花色的取法為,缺少三種花色的取法為,根據容斥原理可知四種花色齊全的取法為

12.設中點為,連.由已知得平面,作,交的延長線于點,連.則為所求,設,則,在

中可求出,則

二、填空題

13.

提示:可以用換元法,原不等式為也可以用數形結合法.

,在同一坐標系內分別畫出這兩個函數的圖象,由圖直觀得解集.

14.12.提示:經判斷,為截面團的直徑,再由巳知可求出球的半徑為

15..提示:由于

解得,又

所以,當時,取得最小值.

16.①②④

三、解答題

17.懈:

,由正弦定理得,

,化簡得

為等邊三角形.

說明;本題是向量和三角相結合的題目,既考查了向量的基本知識,又考查了三角的有關知識,三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.

18.解:(1)在第一次更換燈泡工作中,不需要更換燈泡的概率為需要更換2只燈泡的概率為

       (2)對該盞燈來說,在第1、2次都更換了燈泡的概率為,在第一次未更換燈泡而在第二次需要更換燈泡的概率為,故所求的概率為

       (3)當時,

              由(2)知第二次燈泡更換工作中,某盞燈更換的概率

              故至少換4只燈泡的概率為

19.解:]

              因為函數處的切線斜率為

              所以

              即                                           ①

              又

              得                                      ②

       (1)函數時有極值

                                    ③

              解式①②③得

              所以

       (2)因為函數在區間上單調遞增,所以導函數在區間的值恒大于或等于零.

              則

              得,所以實數的取值范圍為

20.解:(1)連接因為平面,平面平面

所以;又的中點,故的中點

              底面

              與底面所成的角

              在中,

學科網(Zxxk.Com)              所以與底面所成的角為45°.

(2)解法一;如圖建立直角坐標系

       則, 

                       設點的坐標為

              故   

             

             

              的坐標為

             

              故

       解法二:平面

              ,又

              平面

在正方形中,

21.解:(1)設點的坐標分別為,點的坐標為

時,設直線的斜率為

直線過點

的方程為

又已知                                               ①

                                                           ②

                                                        ③

                                                ④

∴式①一式②得

          ⑤

③式+式④得

                             ⑥

              ∴由式⑤、式⑥及

              得點的坐標滿足方程

                                        ⑦

時,不存在,此時平行于軸,因此的中點一定落在軸上,即的坐標為,顯然點,0)滿足方程⑦

綜上,點的坐標滿足方程

設方程⑦所表示的曲線為

則由,

因為,又已知

所以當時. ,曲線與橢圓有且只有一個交點

時,,曲線與橢圓沒有交點,因為(0,0)在橢圓內,又在曲線上,所以曲線在橢圓內,故點的軌跡方程為

(2)由解得曲線軸交于點(0,0),(0,

解得曲線軸交于點(0,0).(,0)

,即點為原點時,(,0)、(0,)與(0.0)重合,曲線與坐標軸只有一個交點(0,0).

,且,即點不在橢圓外且在除去原點的軸上時,曲線與坐標軸有兩個交點(0,)與(0,0),同理,當時,曲線與坐標軸有兩個交點(,o)、(0,0).

,且時,即點不在橢圓且不在坐標軸上時,曲線與坐標軸有三個交點(,0)、(0,)與(0,0).

22.(1)解:,又

              是以首項為,公比為的等比數列.

             

       (2)證明:設數列的公比為,則條件等式可化為:

數列為等差數列,

       (3)證明:由題意知

                                                     ①

              式①

                                                ②

              式①-式②得

             

             

             

             

www.ks5u.com

 

 


同步練習冊答案
主站蜘蛛池模板: 日韩成人短视频 | 国产精品欧美日韩 | 精品美女一区 | 国产成人精品一区二区三区网站观看 | y111111国产精品久久婷婷 | www.久久爱.cn | 成人伊人网 | 色综合免费 | 国产 日韩 欧美 在线 | 午夜在线视频 | 成人一区二区在线 | 在线日本视频 | 一区二区日韩精品 | 宅宅久久 | 日本亚洲一区 | 91日日 | 99国产精品| 欧美一区二区三区 | 精品无码久久久久久国产 | 日韩成人午夜 | 亚洲国产精品一区二区久久 | 国产精品美女在线观看直播 | 亚洲综合在线一区 | 成人免费视频网站 | 国产色在线 | 亚州综合一区 | 日本高清视频网站www | 成人黄色一级网站 | 久久久久久久一区 | 日本不卡免费新一二三区 | 日韩中文字 | 亚洲欧美高清 | 国产精品国产精品国产专区不片 | 亚洲精品不卡 | 色偷偷噜噜噜亚洲男人 | 亚洲视频免费在线 | 国产欧美精品区一区二区三区 | 一区二区欧美视频 | 99久久久无码国产精品 | 久热精品视频 | v888av成人 |