設橢圓的中心和拋物線
的頂點均為原點
,
、
的焦點均在
軸上,過
的焦點F作直線
,與
交于A、B兩點,在
、
上各取兩個點,將其坐標記錄于下表中:
(1)求,
的標準方程;
(2)若與
交于C、D兩點,
為
的左焦點,求
的最小值;
(3)點是
上的兩點,且
,求證:
為定值;反之,當
為此定值時,
是否成立?請說明理由.
(1)
:
;(2)
;(3)證明見解析.
解析試題分析:(1)分析哪些點在橢圓上,哪些點在拋物線上,顯然是橢圓的頂點,因此
,從而點
是橢圓上的點,另兩點在拋物線上,代入它們的標準方程可求得其方程;(2)
與
的頂點都是
,底在同一直線上,因此基、其面積之比為底的比,即
,這樣我們只要求出直線
與已知兩曲線相交弦長即可,直線
與曲線
交于兩點,其弦長為
,當然由于直線過圓錐曲線的焦點,弦長也可用焦半徑公式表示;(3)從題意可看出,只有把
,
求出來,才能得出結論,為了求
,
,我們可設
方程為
,則
方程為
,這樣
,
都能用
表示出來,再計算
可得其為定值
,反之若
,我們只能設
方程為
,
方程為
,分別求出
,代入此式,得出
,如果一定能得到
1,則就一定有
,否則就不一定有
.
試題解析:(1)在橢圓上,
在拋物線上,
:
(4分)
(2)(理)
=
.
是拋物線的焦點,也是橢圓的右焦點,①當直線
的斜率存在時,
設:
,
,
聯立方程,得
,
時
恒成立.
(也可用焦半徑公式得:) (5分)
聯立方程,得
,
恒成立.
, (6分)
=
. (8分)
②當直線的斜率不存在時,
:
科目:高中數學 來源: 題型:解答題
已知定點,過點F且與直線
相切的動圓圓心為點M,記點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點A的坐標為,與曲線E相交于B,C兩點,直線AB,AC分別交直線
于點S,T.試判斷以線段ST為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關于直線
對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓
的位置關系,并說明理由;
(3)若圓的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當直線
斜率為0時,
.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率
,且直線
是拋物線
的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線
,判斷l與橢圓的位置關系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知雙曲線的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓
相切,且與雙曲線左、右兩支的交點分別為
.
(1)求k的取值范圍,并求的最小值;
(2)記直線的斜率為
,直線
的斜率為
,那么
是定值嗎?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的準線與x軸交于點M,過點M作圓
的兩條切線,切點為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點為橢圓
右焦點,圓
與橢圓
的一個公共點為
,且直線
與圓
相切于點
.
(1)求的值及橢圓
的標準方程;
(2)設動點滿足
,其中M、N是橢圓
上的點,
為原點,直線OM與ON的斜率之積為
,求證:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com