日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

解:(I)依題意.可知. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

【解析】第一問中,利用定義,判定由題意得,由,所以

第二問中, 由題意得方程有兩實根

所以關(guān)于m的方程有兩實根,

即函數(shù)與函數(shù)的圖像在上有兩個不同交點,從而得到t的范圍。

解(I)由題意得,由,所以     (6分)

(II)由題意得方程有兩實根

所以關(guān)于m的方程有兩實根,

即函數(shù)與函數(shù)的圖像在上有兩個不同交點。

 

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

如圖,已知點和單位圓上半部分上的動點B.

(1)若,求向量

(2)求的最大值.

【解析】對于這樣的向量的坐標和模最值的求解,利用建立直角坐標系的方法可知。

第一問中,依題意,

因為,所以,即

解得,所以

第二問中,結(jié)合三角函數(shù)的性質(zhì)得到最值。

(1)依題意,(不含1個或2個端點也對)

 (寫出1個即可)

因為,所以,即

解得,所以.-

(2)

 時,取得最大值,

 

查看答案和解析>>

設函數(shù)f(x)=在[1,+∞上為增函數(shù).  

(1)求正實數(shù)a的取值范圍;

(2)比較的大小,說明理由;

(3)求證:(n∈N*, n≥2)

【解析】第一問中,利用

解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

∴n≥2時:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增。∴最大值為

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 久久国产精品视频 | 九九热精品免费视频 | 天堂久久精品 | 国产噜噜噜噜噜久久久久久久久 | 老妇女av | 欧美日韩h| www污在线观看 | 成人午夜sm精品久久久久久久 | 国产超碰人人模人人爽人人添 | 日韩在线短视频 | 97精品一区 | 在线观看亚洲a | 亚洲精品久久久久久下一站 | 日韩欧美国产精品综合嫩v 午夜精品久久久久久久久 97色在线视频 | 国产视频一区二区 | 欧美美女黄色网 | 亚洲综合在线播放 | 欧美大片免费看 | 国产精品久久久久久久久久久免费看 | 久久亚洲春色中文字幕久久久 | 亚洲精品一区二区三区四区高清 | 久久青青 | 欧美国产日韩在线 | 青草视频在线观看免费 | 天堂视频在线 | 欧美日韩精品区 | 成人精品一区二区三区中文字幕 | 精品一区二区在线播放 | 日韩在线观看视频免费 | 一级黄色片网址 | 国产精品免费在线 | 蜜桃色网 | 四虎亚洲精品 | 81精品国产乱码久久久久久 | www.免费看黄网站 | 福利午夜 | 国产精品久久久久高潮色老头 | 国产精品91av | 男女网站 | 高清一区二区 | 日韩一区二区中文字幕 |